Butan-1-ol - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Butan-1-ol
 ...
Butan-1-ol
Strukturní vzorec
Strukturní vzorec
Model molekuly
Model molekuly
Obecné
Systematický názevbutan-1-ol
Ostatní názvyn-butanol
Funkční vzorecCH3(CH2)2CH2OH
Sumární vzorecC4H10O
Vzhledbezbarvá kapalina[1]
Identifikace
Registrační číslo CAS71-36-3
EC-no (EINECS/ELINCS/NLP)200-751-6
PubChem263
ChEBI28885
SMILESOCCCC
InChI1S/C4H10O/c1-2-3-4-5/h5H,2-4H2,1H3
Číslo RTECSEO1400000
Vlastnosti
Molární hmotnost74,122 g/mol
Teplota tání−89,8 °C (183,4 K)[1]
Teplota varu117,7 °C (390,8 K)[1]
Hustota0,8098 g/cm3 (20 °C)[1]
Disociační konstanta pKa16,1[1]
Rozpustnost ve vodě6,32 g/100 ml[1]
Rozpustnost v polárních
rozpouštědlech
rozpustný v acetonu a ethanolu[1]
Rozpustnost v nepolárních
rozpouštědlech
rozpustný v diethyletheru[1]
Tlak páry0,58 kPa (20 °C)[1]
Bezpečnost
GHS02 – hořlavé látky
GHS02
GHS05 – korozivní a žíravé látky
GHS05
GHS07 – dráždivé látky
GHS07
[1]
H-větyH226 H302 H315 H318 H335 H336[1]
P-větyP210 P233 P240 P241 P242 P243 P261 P264 P270 P271 P280 P301+312 P302+352 P303+361+353 P304+340 P305+351+338 P310 P312 P321 P330 P332+313 P362 P370+378 P403+233 P403+235 P405 P501[1]
Teplota vznícení343 °C (616 K)}[1]
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).

Některá data mohou pocházet z datové položky.

Butan-1-ol, také nazývaný n-butanol, je primární alkohol se vzorcem C4H9OH a lineární strukturou. Jeho izomery jsou isobutanol, butan-2-ol a terc-butanol. Samotný název butanol se obvykle používá pro nerozvětvený primární izomer.

Butan-1-ol vzniká jako vedlejší produkt ethanolového kvašení sacharidů[2] a nachází se v řadě potravin a nápojů.[3][4] Používá se jako ochucovadlo[5] v máslu, smetaně, ovoci, rumu, whiskey, zmrzlině, cukrovinkách, pečivu a likérech.[6][3]

Nejvíce se butan-1-ol jako meziprodukt v chemickém průmyslu, například na výrobu butylacetátu (používaného také jako ochucovadlo; i jako průmyslové rozpouštědlo). Vyrábí se z propenu získávaného z ropy.

Výroba

Od 50. let 20. století se butan-1-ol vyrábí především hydroformylací propenu (nazývaným také oxo proces), kdy je hlavním produktem butyraldehyd (n-butanal) katalyzátory jsou obvykle odvozeny od kobaltu nebo rhodia. Butyraldehyd se následně hydrogenuje za vzniku butanolu.

Dalším způsobem výroby butanolu je Reppeova reakce propenu s oxidem uhelnatým a vodou:[7]

CH3CH=CH2 + H2O + 2 CO → CH3CH2CH2CH2OH + CO2

V minulosti se butanol vyráběl z krotonaldehydu, jenž se získával z acetaldehydu.

Butanol může také vznikat kvašením působením bakterií. Před 50. léty 20. století se k průmyslové výrobě butanolu používala bakterie Clostridium acetobutylicum. Bylo zjištěno, že i jiné mikroorganismy mohou tvořit butanol.

Použití

85 % butanolu se používá na výrobu laků. Jedná se o často používané rozpouštědlo, například u nitrocelulózy. Jako rozpouštědla slouží také řada látek jako je 2-butoxyethanol. Na butylesterech je založeno mnoho změkčovadel, například dibutylftalát. Butylakrylát se používá na výrobu polymerů. Butanol také slouží jako prekurzor n-butylaminů.[7]

Biopalivo

Butan-1-ol byl navržen jako náhrada nafty a benzínu. V malých množstvích vzniká v téměř všech kvasných procesech a ve velkém množství jej vytváří bakterie rodu Clostridium. Výzkum se zaměřuje především na získávání většího množství butanolu z biomasy.

V motorech určených pro používání benzinu lze jako palivo použít až 85% butanol, aniž by bylo třeba přestavovat motor (což není možné u 85% ethanolu), navíc poskytuje ze stejného objemu více energie než ethanol, protože obsahuje méně kyslíku,[8] množství uvolněné energie je téměř stejné jako u benzinu. Butanol lze také přidávat do nafty za účelem snížení množství sazí.[9]

U následujících materiálů může výroba, někdy i používání, způsobit vystavení butan-1-olu: u syntetických kůží, butylesterů, barev, ovocných vůní, laků, fotografických filmů, pláštěnek, parémů, pyroxylinových plastů, viskózových vláken, bezpečnostních skel a vodě odolného oblečení.[3]

Výskyt

Butan-1-ol vzniká kvašením cukrů v řadě různých alkoholických nápojů, jako jsou pivo,[10] vinné pálenky,[11] víno[12] a whiskey.[13]

Byl také nalezen mezi těkavými látkami v chmelu,[14] plodů chlebovníku různolistém,[15] tepelně ošetřeném mléku,[16] melounu cukrovém,[17] v sýrech,[18] semenech rostliny Vigna unguiculata[19] a vařené rýži.[20]

Butanol také vzniká při smažení v kukuřičném a bavlněném oleji, linoleinu a trioleinu.[21]


Butan-1-ol je přirozenou složkou řady alkoholických nápojů, i když jsou jeho koncentrace nízké a proměnlivé.[22][23]

Butanol se považuje za příčinu některých případů těžké kocoviny, i když experimenty na zvířecích modelech tento vliv nepotvrdily.[24]

Butan-1-ol se také používá na výrobu ochucovadel[25] a k extrakci bezlipidových bílkovin z vaječného žloutku,[26] také k získávání chmelových extraktů extraktů a jako rozpouštědlo při odstraňování pigmentů z koncentrátů listových bílkovin.[27]

Metabolismus a toxicita

Akutní toxicita butanolu je nízká, LD50 při ústním podání je u krys 790–4360 mg/kg (u ethanolu činí 7000–15 000 mg/kg).[4][7] U obratlovců je metabolizován podobně jako ethanol: alkoholdehydrogenáza jej přeměňuje na butyraldehyd, ze kterého se poté působením aldehyddehydrogenázy stává kyselina máselná. Kyselina máselná může být metabolizována až na oxid uhličitý a vodu v beta oxidaci. U krys se při dávce 2000 mg/kg pouze 0,03 % vyloučilo močí.[28] Při subletálních dávkách butan-1-ol, podobně jako ethanol, utlumuje činnost centrální nervové soustavy: schopnost vyvolat otravu je u butanolu přibližně šestinásobná oproti ethanolu, pravděpodobně v důsledku pomalejší přeměny alkoholdehydrogenázou.[29]

Ostatní nebezpečí

Kapalný butan-1-ol je, podobně jako většina organických rozpouštědel, značně dráždivý vůči očím; podráždění může být vyvoláno i opakovaným stykem s kůží.[4] Zvýšení citlivosti kůže pozorováno nebylo. K podráždění dýchací soustavy dochází pouze při vysokých koncentracích (nad 2400 ppm).[30]

Vzhledem k teplotě vzplanutí 35 °C se butan-1-ol řadí mezi středně nebezpečné hořlaviny; je o něco hořlavější než petrolej nebo nafta, ovšem méně než mnohá běžná organická rozpouštědla. Utlumení centrální nervové soustavy způsobované touto látkou (podobné otravě ethanolem) může představovat určité nebezpečí při práci v uzavřených prostorech, i když je cítit při koncentracích 0,2 až 30 ppm, které jsou příliš nízké na to, aby mohly působit na nervovou soustavu.[30][31]

Odkazy

Reference

V tomto článku byl použit překlad textu z článku 1-Butanol na anglické Wikipedii.

  1. a b c d e f g h i j k l m https://pubchem.ncbi.nlm.nih.gov/compound/263
  2. Lucie A. Hazelwood; Jean-Marc Daran; Antonius J. A. van Maris; Jack T. Pronk; J. Richard Dickinson. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology. 2008, s. 2259–2266. DOI 10.1128/AEM.02625-07. PMID 18281432. Bibcode 2008ApEnM..74.2259H. 
  3. a b c Butanols - four isomers (EHC 65, 1987). www.inchem.org . . Dostupné online. 
  4. a b c n-Butyl Alcohol. Inchem . . Dostupné v archivu pořízeném z originálu dne 2016-03-03. 
  5. 21 C.F.R. § 172.515; 42 FR 14491, Mar. 15, 1977, as amended.
  6. HALL, R. L.; OSER, B. L. Recent progress in the consideration of flavouring ingredients under the food additives amendment. III. Gras substances. Food Technology. 1965, s. 151. 
  7. a b c Ullmann's Encyclopedia of Industrial Chemistry. 1. vyd. : Wiley Dostupné online. ISBN 978-3-527-30385-4, ISBN 978-3-527-30673-2. DOI 10.1002/14356007.a04_463.pub3. (anglicky) DOI: 10.1002/14356007. 
  8. Schmidt-Rohr, K. (2015). "Why Combustions Are Always Exothermic, Yielding About 418 kJ per Mole of O2", J. Chem. Educ. 92: 2094-2099. https://dx.doi.org/10.1021/acs.jchemed.5b00333
  9. D. Antoni; V. Zverlov; W. H. Schwarz. Biofuels from Microbes. Applied Microbiology and Biotechnology. 2007, s. 23–35. DOI 10.1007/s00253-007-1163-x. PMID 17891391. 
  10. W. Bonte. Congener substances in German and foreign beers. Blutalkohol. 1979, s. 108–124. 
  11. Peter Schreier; Friedrich Drawert; Friedrich Winkler. Composition of neutral volatile constituents in grape brandies. Journal of Agricultural and Food Chemistry. 1979, s. 365–372. DOI 10.1021/jf60222a031. 
  12. W. Bonte. Congener content of wine and similar beverages. Blutalkohol. 1979, s. 392–404. 
  13. W. Postel; L. Adam. Gas chromatographic characterization of whiskey. III. Irish whiskey. Branntweinwirtschaft. 1978, s. 404–407. 
  14. Roland Tressl; Lothar Friese; Friedrich Fendesack; Hans Koeppler. Studies of the volatile composition of hops during storage. Journal of Agricultural and Food Chemistry. 1978, s. 1426–1430. DOI 10.1021/jf60220a036. 
  15. G. Swords; P. A. Bobbio; G. L. K. Hunter. Volatile constituents of jack fruit (Arthocarpus heterophyllus). Journal of Food Science. 1978, s. 639–640. DOI 10.1111/j.1365-2621.1978.tb02375.x. 
  16. Haytham A. Jaddou; John A. Pavey; Donald J. Manning. Chemical analysis of flavor volatiles in heat-treated milks. Journal of Dairy Research. 1978, s. 391–403. DOI 10.1017/S0022029900016617. 
  17. K. Yabumoto; K. Yamaguchi; W. G. Jennings. Production of volatile compounds by Muskmelon, Cucumis melo. Food Chemistry. 1978, s. 7–16. DOI 10.1016/0308-8146(78)90042-0. 
  18. Jean Pierre Dumont; Jacques Adda. Occurrence of sesquiterpones in mountain cheese volatiles. Journal of Agricultural and Food Chemistry. 1978, s. 364–367. DOI 10.1021/jf60216a037. 
  19. Gordon S. Fisher; Michael G. Legendre; Norman V. Lovgren; Walter H. Schuller; John A. Wells. Volatile constituents of southernpea seed s.l.: JMonell Chemical Senses Center, 1996. 
  20. J. Enrique Cometto-Muñiz; William S. Cain. Trigeminal and Olfactory Sensitivity: Comparison of Modalities and Methods of Measurement. International Archives of Occupational and Environmental Health. 1998, s. 105–110. Dostupné online. DOI 10.1007/s004200050256. PMID 9580447. 

Související článkyeditovat | editovat zdroj

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Butan-1-ol
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk