Weak acid - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Weak acid
 ...

Acid strength is the tendency of an acid, symbolised by the chemical formula , to dissociate into a proton, , and an anion, . The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions.

Examples of strong acids are hydrochloric acid , perchloric acid , nitric acid and sulfuric acid .

A weak acid is only partially dissociated, with both the undissociated acid and its dissociation products being present, in solution, in equilibrium with each other.

Acetic acid () is an example of a weak acid. The strength of a weak acid is quantified by its acid dissociation constant, value.

The strength of a weak organic acid may depend on substituent effects. The strength of an inorganic acid is dependent on the oxidation state for the atom to which the proton may be attached. Acid strength is solvent-dependent. For example, hydrogen chloride is a strong acid in aqueous solution, but is a weak acid when dissolved in glacial acetic acid.

Measures of acid strength

The usual measure of the strength of an acid is its acid dissociation constant (), which can be determined experimentally by titration methods. Stronger acids have a larger and a smaller logarithmic constant () than weaker acids. The stronger an acid is, the more easily it loses a proton, . Two key factors that contribute to the ease of deprotonation are the polarity of the bond and the size of atom A, which determine the strength of the bond. Acid strengths also depend on the stability of the conjugate base.

While the value measures the tendency of an acidic solute to transfer a proton to a standard solvent (most commonly water or DMSO), the tendency of an acidic solvent to transfer a proton to a reference solute (most commonly a weak aniline base) is measured by its Hammett acidity function, the value. Although these two concepts of acid strength often amount to the same general tendency of a substance to donate a proton, the and values are measures of distinct properties and may occasionally diverge. For instance, hydrogen fluoride, whether dissolved in water ( = 3.2) or DMSO ( = 15), has values indicating that it undergoes incomplete dissociation in these solvents, making it a weak acid. However, as the rigorously dried, neat acidic medium, hydrogen fluoride has an value of –15,[1] making it a more strongly protonating medium than 100% sulfuric acid and thus, by definition, a superacid.[2] (To prevent ambiguity, in the rest of this article, "strong acid" will, unless otherwise stated, refer to an acid that is strong as measured by its value ( < –1.74). This usage is consistent with the common parlance of most practicing chemists.)

When the acidic medium in question is a dilute aqueous solution, the is approximately equal to the pH value, which is a negative logarithm of the concentration of aqueous in solution. The pH of a simple solution of an acid in water is determined by both and the acid concentration. For weak acid solutions, it depends on the degree of dissociation, which may be determined by an equilibrium calculation. For concentrated solutions of acids, especially strong acids for which pH < 0, the value is a better measure of acidity than the pH.

Strong acids

Image of a strong acid mostly dissociating. The small red circles represent H+ ions.

A strong acid is an acid that dissociates according to the reaction

where S represents a solvent molecule, such as a molecule of water or dimethyl sulfoxide (DMSO), to such an extent that the concentration of the undissociated species is too low to be measured. For practical purposes a strong acid can be said to be completely dissociated. An example of a strong acid is hydrochloric acid.

(in aqueous solution)

Any acid with a value which is less than about -2 is classed as a strong acid. This results from the very high buffer capacity of solutions with a pH value of 1 or less and is known as the leveling effect.[3]

The following are strong acids in aqueous and dimethyl sulfoxide solution. The values of








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk