Brønsted–Lowry acid–base theory - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Brønsted–Lowry acid–base theory
 ...

The Brønsted–Lowry theory (also called proton theory of acids and bases[1]) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923.[2][3] The basic concept of this theory is that when an acid and a base react with each other, the acid forms its conjugate base, and the base forms its conjugate acid by exchange of a proton (the hydrogen cation, or H+). This theory generalises the Arrhenius theory.

Definitions of acids and bases

Johannes Nicolaus Brønsted and Thomas Martin Lowry, independently, formulated the idea that acids donate protons (H+) while bases accept protons.

In the Arrhenius theory, acids are defined as substances that dissociate in aqueous solutions to give H+ (hydrogen ions or protons), while bases are defined as substances that dissociate in aqueous solutions to give OH (hydroxide ions).[4]

In 1923 physical chemists Johannes Nicolaus Brønsted in Denmark and Thomas Martin Lowry in England both independently proposed the theory named after them.[5][6][7] In the Brønsted–Lowry theory acids and bases are defined by the way they react with each other, generalising them. This is best illustrated by an equilibrium equation.

acid + baseconjugate base + conjugate acid.

With an acid, HA, the equation can be written symbolically as:

The equilibrium sign, ⇌, is used because the reaction can occur in both forward and backward directions (is reversible). The acid, HA, is a proton donor which can lose a proton to become its conjugate base, A. The base, B, is a proton acceptor which can become its conjugate acid, HB+. Most acid–base reactions are fast, so the substances in the reaction are usually in dynamic equilibrium with each other.[8]

Aqueous solutions

Acetic acid, CH3COOH, is composed of a methyl group, CH3, chemically bound to a carboxyl group, −COOH. The carboxyl group can lose a proton and donate it to a water molecule, H2O, leaving behind an ethanoate anion CH3COO− and creating a hydronium cation H3O+. This is an equilibrium reaction, so the reverse process can also take place.
Acetic acid, a weak acid, donates a proton (hydron) to water in an equilibrium reaction to give the acetate ion and the hydronium ion.
  Oxygen
  Carbon
  Hydrogen
  Proton (hydron)

Consider the following acid–base reaction:

Acetic acid, CH3COOH, is an acid because it donates a proton to water (H2O) and becomes its conjugate base, the acetate ion (CH3COO). H2O is a base because it accepts a proton from CH3COOH and becomes its conjugate acid, the hydronium ion, (H3O+).[9]

The reverse of an acid–base reaction is also an acid–base reaction, between the conjugate acid of the base in the first reaction and the conjugate base of the acid. In the above example, ethanoate is the base of the reverse reaction and hydronium ion is the acid.

One feature of the Brønsted–Lowry theory in contrast to Arrhenius theory is that it does not require an acid to dissociate.

Amphoteric substances

The amphoteric nature of water

The essence of Brønsted–Lowry theory is that an acid is only such in relation to a base, and vice versa. Water is amphoteric as it can act as an acid or as a base. In the image shown at the right one molecule of H2O acts as a base and gains H+ to become H3O+ while the other acts as an acid and loses H+ to become OH.

Another example is illustrated by substances like aluminium hydroxide, Al(OH)3.

Non-aqueous solutions

The hydrogen ion, or hydronium ion, is a Brønsted–Lowry acid when dissolved in H2O and the hydroxide ion is a base because of the autoionization of water reaction

An analogous reaction occurs in liquid ammonia

Thus, the ammonium ion, NH+4, in liquid ammonia corresponds to the hydronium ion in water and the amide ion, NH2 in ammonia, to the hydroxide ion in water. Ammonium salts behave as acids, and amides behave as bases.[10]

Some non-aqueous solvents can behave as bases, i.e. accept protons, in relation to Brønsted–Lowry acids.

where S stands for a solvent molecule. The most important of such solvents are dimethylsulfoxide, DMSO, and acetonitrile, CH3CN, as these solvents have been widely used to measure the acid dissociation constants of carbon-containing molecules. Because DMSO accepts protons more strongly than H2O the acid becomes stronger in this solvent than in water.[11] Indeed, many molecules behave as acids in non-aqueous solutions but not in aqueous solutions. An extreme case occurs with carbon acids, where a proton is extracted from a C−H bond.[page needed]

Some non-aqueous solvents can behave as acids. An acidic solvent will make dissolved substances more basic. For example, the compound CH3COOH is known as acetic acid since it behaves as an acid in water. However it behaves as a base in liquid hydrogen chloride, a much more acidic solvent.[12]







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk