Země - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Země
 ...
Tento článek je o planetě. Další významy jsou uvedeny na stránce Země (rozcestník).
Na tento článek je přesměrováno heslo Terra. O automobilu Tatra Terra pojednává článek Tatra Terra.
Země
Pohled na Zemi, modrou planetu. Snímek pořízený z Apolla 17 během cesty na Měsíc (1972).
Pohled na Zemi, modrou planetu. Snímek pořízený z Apolla 17 během cesty na Měsíc (1972).
Symbol planety🜨︎
Elementy dráhy
(Ekvinokcium J2000,0)
Velká poloosa149 597 887 km
1,000 000 11 au
Obvod oběžné dráhy9,4×108 km
6,283 au
Výstřednost0,016 710 22
Perihel147 098 074 km
0,983 289 9 au
Afel152 097 701 km
1,0167103 au
Perioda (oběžná doba)365,256 96 d
(1,000 019 1 a)
Orbitální rychlost 
- minimální29,291 km/s
- průměrná29,783 km/s
- maximální30,287 km/s
Sklon dráhy 
- k ekliptice0,000 05°
- ke slunečnímu rovníku7,25°
Délka vzestupného uzlu348,739 36°
Argument šířky perihelu114,207 83°
Počet
přirozených satelitů
1 (Měsíc)
Fyzikální charakteristiky
Rovníkový průměr12 756,270 km
(1 Země)
Polární průměr12 713,500 km
(1 Země)
Zploštění0,003 352 861
Povrch510 065 284,702 km²
(1 Země)
Objem1,0832×1012 km³
(1 Země)
Hmotnost5,9736×1024 kg
(1 Země)
Průměrná hustota5,515 g/cm³
Gravitace na rovníku9.807 m/s²
(1 G)
Úniková rychlost11,186 km/s
Perioda rotace0,997258 d
Rychlost rotace1674,4 km/h
(na rovníku)
Sklon rotační osy23,439 281°
Albedo0,367
Povrchová teplota 
- minimální(−89,15 °C) 184 K
- průměrná(13,85 °C) 287 K
- maximální(56,7 °C) 329 K
Charakteristiky atmosféry
Atmosférický tlak101 kPa
Dusík78,08 %
Kyslík20,95 %
Argon0,93 %
Oxid uhličitý0,038 %
Vodní páry, SO2, vodík... páry0,033 %

Země je třetí planeta sluneční soustavy se střední vzdáleností od Slunce asi 1 au, zároveň největší terestrická planeta v soustavě a jediné planetární těleso, na němž je dle současných vědeckých poznatků potvrzen život. Země vznikla před 4,6 miliardami let a krátce po svém vzniku získala svůj jediný přirozený satelitMěsíc. Země obíhá kolem Slunce po elipse s velmi malou excentricitou dráhy. Země jako domovský svět lidstva má mnoho názvů v závislosti na národu, mezi nejznámější patří název latinského původu Terra, či řecký název Gaia.[1]

Země je dynamická planeta, která se skládá z jednotlivých zemských sfér. Jedná se o nedokonalou kouli s rovníkovým poloměrem cca 6 378,14 km (a průměrným poloměrem cca 6371,0 km), uprostřed se nachází malé pevné jádro obklopené polotekutým vnějším jádrem, dále pak pláštěmzemskou kůrou, která se dělí na oceánskou a kontinentální. Zemská kůra je tvořena litosférickými deskami, které jsou v neustálém pohybu vlivem procesu nazývaného desková tektonika. Na povrchu Země se vyskytuje hydrosféra v podobě souvislého oceánu kapalné vody, který zabírá přibližně 71 % zemského povrchu. Na velmi úzkém pásu rozhraní mezi litosférou a atmosférou se nachází biosféra, živý obal Země, který je tvořen živými organismy. Jeho činností došlo k přeměně části litosféry na půdní obal Země, tzv. pedosféru. Celou planetu obklopuje hustá atmosféra tvořená převážně dusíkem a kyslíkem, což jsou plyny vytvářející směs obvykle nazývanou jako vzduch.

Astronomický symbol Země sestává z kříže v kruhu, reprezentujícího poledník a rovník: 🜨; v jiných variantách je to královské jablko s křížem vysunutým nad kruh: : ♁. Kromě slov odvozených od Terra, jako je terestrický, obsahují pojmy vztahující se k Zemi také prefix telur- nebo tellur- (např. telurický, tellurit podle bohyně Tellūs) a geo- (např. geocentrický model, geologie).

Planeta Země je domovským světem lidstva, které je na Zemi rozděleno do přibližně 200 nezávislých států. Tyto státy a v nich žijící národy a etnické skupiny jsou ve vzájemném působení prostřednictvím Organizace spojených národů, jiných mezinárodních organizací a mezistátních a mezinárodních aktivit jako jsou diplomacie, obchod, doprava, cestovánívědeckákulturní výměna.

Vznik Země

Vznik a vývoj Země – dokument

Země vznikla podobně jako ostatní planety slunečního systému přibližně před 4,6 miliardami let[2] akrecípracho-plynného disku, jenž obíhal kolem rodící se centrální hvězdy, tj. Slunce. Srážkami prachových částic se začala formovat malá tělesa, která svou gravitací přitahovala další částice a okolní plyn. Vznikly tak první planetesimály, které se vzájemně srážely a formovaly větší tělesa.[3] Na konci tohoto procesu v soustavě vznikly čtyři terestrické protoplanety. Formování proto-Země trvalo zhruba 5 miliónů let.[4][5] Vzájemné srážky planetesimál společně s teplem uvolněným z radioaktivních rozpadů roztavily větší část materiálu, který tvoří Zemi. Předpokládá se, že roztavený povrch se na planetě vyskytoval přibližně miliardu let.[2]

Po zformování protoplanety pokračovalo masivní bombardování povrchu zbylým materiálem ze vzniku sluneční soustavy, což mělo za následek jeho neustálé přetváření, přetavování a přínos nového materiálu. Je dokonce možné, že celý povrch byl roztaven do podoby tzv. magmatického oceánu.[3] Během této doby docházelo nejspíše i k diferenciaci pláště a jádra, když těžší prvky, jako např. železo, klesaly vlivem gravitační diferenciace do středu planety.[3] Došlo ke vzniku těžkého jádra a pláště a lehké prvky se zasloužily o vznik kůry. Kůra začala vznikat jako první sféra, o čemž svědčí nálezy nejstarších hornin starých až 4 miliardy let.[2] Uvnitř Země zůstala akumulovaná energie z předchozích období doplňována rozpady radioaktivních látek. Teplo se postupně uvolňovalo do svrchních oblastí, což způsobilo vznik aktivního vulkanismu, tektonických procesů a nejspíše i deskové tektoniky.[pozn. 1]

Z rozsáhlých lávových oblastí se uvolňovalo značné množství plynů (vodní páry, oxidu uhličitého apod.)[3], které se přidalo k původní atmosféře tvořené převážně z vodíku a hélia. Během první miliardy let z atmosféry unikla převážná část vodíku a hélia, které si Země svojí gravitací nedokázala udržet.[8] Neustálé dopady komet zvyšovaly obsah vodní páry v atmosféře. Současně docházelo k poklesu teploty atmosféry, která při poklesu přibližně na 300 °C umožnila vznik prvních výrazných srážek. Déšť se při dopadu na povrch okamžitě vypařil a v atmosféře opět zkondenzoval. Celý cyklus se nesčetněkrát opakoval, až vznikly postupně oceány.[3] Přítomnost vody umožnila navazování uhlíku do hornin, což zmenšovalo jeho zastoupení, které se projevilo později ve vzniku života.[8]

Předpokládá se, že první život na Zemi vznikl před 4 miliardami let v dobách, kdy byla atmosféra ještě obohacena volným vodíkem, který působil jako reakční činidlo v řadě chemických reakcí potřebných pro vznik organických látek. První primitivní organismy vznikly ve vodě, kde začaly s produkcí atmosférického kyslíku, jenž byl do té doby v atmosféře jen vzácným plynem.[9] Postupnou činností zelených rostlin došlo k přetvoření atmosféry na dnešní podobu, kdy je kyslík jedním z hlavních prvků ve složení vzduchu. Volný molekulární kyslík v horních vrstvách vlivem dopadajícího slunečního záření se štěpil na atomy a při následném zpětném spojování vznikal tříatomový ozón. Vznikla tak vrstva, která zabraňovala (a dosud brání) dopadu škodlivého ultrafialového záření na povrch Země, což umožnilo rozšíření života i mimo vodní prostředí. Rozšířením života se na Zemi začal do atmosféry uvolňovat i další plyn, dusík, který vznikal jako výsledek rozkladných procesů organických látek.[9]

Fyzikální charakteristiky

Země je terestrická planeta, což označuje její kamenitý pevný povrch oproti plynným obrům, jako jsou Jupiter či Saturn, které jsou tvořeny převážně plynem. Země je největší terestrická planeta sluneční soustavy, a to jak ve velikosti, tak i v hmotnosti. Mimo tato dvě prvenství je Země také mezi terestrickými tělesy planeta s největší hustotou, s největší povrchovou gravitací, nejsilnějším magnetickým polem a nejrychlejší rotací.[10] V současnosti je to také jediná planeta, na které je možné pozorovat aktivní deskovou tektoniku.

Tvar Země

Tvar planety Země. Zobrazeny vzdálenosti mezi povrchem reliéfu a geocentrem. V Jižní Americe jsou vrcholy And viditelné jako zvýšené oblasti. Data z modelu Earth2014[11].

Poloměr Země je skoro 6,4 tisíce kilometrů, z čehož plyne relativně malá křivost povrchu. Zakřivení způsobená geologickou aktivitou jsou mnohem výraznější než zakřivení vzniklá v důsledku kulatosti. Proto se lidé ve starověku domnívali, že Země je celkově plochá. Proti tomuto názoru ale postupně svědčily různé vědecké poznatky a pozorování. Staří Řekové například pozorovali, že jižní souhvězdí v jižnějších oblastech vycházejí výš nad obzor a také pozorovali, že při zatmění Měsíce Země vrhá vždy kruhový stín. Velikost Země poprvé spočítal Eratosthenés z Kyrény podle rozdílu v délce poledního stínu mezi Asuánem a Alexandrií.

Kulatost Země (stejně jako jiných planet, SlunceMěsíce) je dána vlastnostmi gravitační síly, která působí centrálně kolem těžiště a má sférickou symetrii. Tvar dokonalé koule je však narušen. Lepším přiblížením skutečnosti je rotační elipsoid s malou excentricitou. Vzdálenost pólů je přibližně o 43 km menší než střední rovníkový průměr. To je způsobeno rotací Země kolem své osy, která způsobuje odstředivou sílu. Ta směřuje od osy rotace a vektorově se skládá s gravitační silou, z čehož plyne, že na pólech je největší tíhové zrychlení a na rovníku nejmenší. Rovnoběžky jsou tedy kružnice, zatímco poledníky jsou elipsy s malou výstředností. Skutečný tvar je ještě složitější a pro jeho matematický popis se užívá pojem geoid. Nejvzdálenějším místem od středu Země je díky jejímu zploštění vrcholek hory Chimborazo.

Geologické složení

Země je, nejspíše jako ostatní terestrické planety, vnitřně diferencována na vnější křemíkovou pevnou kůru a vysoce viskózní plášť. K této diferenciaci došlo během roztavení materiálu v rané fázi jejího vzniku, kdy vlivem gravitace těžší prvky směřovaly do středu planety. Tento proces měl za následek vznik malého kompaktního vnitřního jádra – tzv. jadérka, které je dle současných poznatků nejspíše pevné a tvořené převážně železem (86,2 %) a niklem (7,25 %). Nad tímto pevným jádrem o poloměru 1278 km se nachází vnější jádro tvořené roztavenou polotekutou směsí železa, niklu, kobaltusíry a zasahující do vzdálenosti 2900 km, kde je od zemského pláště odděleno Gutenbergovou diskontinuitou. Tekuté vnější jádro umožňuje existenci slabého magnetického pole vlivem konvekce jeho elektricky vodivého materiálu.

Z jádra se neustále uvolňuje značné množství akumulovaného tepla, které má za následek pohyb roztaveného materiálu v zemském tělese. Teplejší materiál ohřátý na rozhraní pláště a jádra začíná v podobě plášťových chocholů stoupat a dostávat se k povrchu. Na některých místech pak dochází k proražení litosférických desek a úniku magmatu skrz sopkytrhlinyoceánských deskách. Mnoho hornin, z nichž je zemská kůra tvořena, se vytvořilo před méně než 100 milióny let; nejstarší známé žíly minerálů jsou 4,4 miliardy let staré, což znamená, že Země měla pevnou kůru přinejmenším po tuto dobu.[12]

Zemské složení je značně variabilní dle toho, jaká část se zkoumá. Značně rozdílné složení vykazuje oceánská kůra od kontinentální, plášť od kůry apod. Předpokládá se, že globální zemské složení podle hmotnosti je následující:[13]

Globální složení Země (dle hmotnostního zastoupení)
prvek železo kyslík křemík hořčík nikl vápník hliník síra sodík titan draslík další
podíl v % 34,1 28,2 17,2 15,9 1,6 1,6 1,5 0,7 0,25 0,071 0,019 0,53

Vnitřní stavba

Související informace naleznete také v článku Stratifikace Země.
Řez Zemí od jádra k exosféře. Levá část obrázku není ve správném měřítku

Zemské těleso se skládá z několika vrstev tzv. geosfér, které na sebe volně navazují. Liší se od sebe složením, hustotou, tlakem a teplotou. Byly detekovány na základě šíření seismických vln. Tyto geosféry jsou směrem od jádra řazeny soustředně, tedy obepínají jádro. Jejich rozložení v tělese je z největší části ovlivněno hmotností látek, ze kterých jsou složeny.

Nejblíže povrchu se nachází litosféra, která má mocnost od 0 do asi 60 km (místně kolísá 5–200 km). Litosféra je složena ze

  • zemské kůry s průměrnou mocností 0 až 35 km a
  • svrchního pláště s mocností 35 až 60 km.

Zemský plášť je v hloubce cca 35 až 2890 km a v hloubce až 700 km se nachází astenosféra.

Pod pláštěm je situované jádro

  • v hloubce 2890 až 5100 km vnější tekuté jádro a
  • pod ním v hloubce 5100 až 6378 km vnitřní pevné jádro.

Zemské jádro

Související informace naleznete také v článku Zemské jádro.

Průměrná hustota Země je 5515 kg/m3, což ji činí nejhustší planetou ve sluneční soustavě. Průměrná hustota materiálu na povrchu však činí jen asi 3000 kg/m3, těžší materiály se proto musí nacházet v zemském jádru. V raném období před asi 4,5 miliardami let byl povrch Země roztaven a hustší hmota klesala ke středu v procesu planetární diferenciace, zatímco lehčí materiály vyplavaly do zemské kůry. Následkem toho je jádro tvořeno především železem spolu s niklem[14] a jedním nebo více lehčími prvky; těžší prvky, jako olovo nebo uran, jsou buď příliš vzácné, než aby byly významnými, nebo mají sklon se slučovat s lehčími prvky, a zůstaly proto v kůře (viz felsické horniny).

Jádro se dělí na dvě části:

  • pevné vnitřní jádro s poloměrem ~1250 km a
  • tekuté vnější jádro o vnějším poloměru ~3500 km, které se rozprostírá kolem něj.

Rozděluje je Diskontinuita Lehmanové v jádře. Všeobecně se předpokládá, že vnitřní jádro je pevné a složené především ze železa a z menší části z niklu. Někteří obhajují názor, že vnitřní jádro by mohlo být ve formě jediného krystalu železa. O vnějším jádru obklopujícím vnitřní se soudí, že je složeno ze směsi tekutého železa a niklu a stopového množství lehčích prvků. Obecně se věří, že konvekce ve vnějším jádru kombinovaná s mícháním způsobeným zemskou rotací způsobuje zemské magnetické pole procesem popsaným teorií dynama. Pevné vnitřní jádro je příliš horké, než aby bylo nositelem stálého magnetického pole, pravděpodobně však přispívá ke stabilizaci pole generovaného tekutým vnějším jádrem.

Na jádro tak připadá okolo 31 % celkové hmotnosti Země.[14] Poslední důkazy naznačují, že vnitřní jádro Země nejspíš rotuje poněkud rychleji než zbytek planety o asi ~0–2° za rok.[15]

Zemský plášť

Související informace naleznete také v článku Zemský plášť.
Sopky představují jediný způsob, jak se dostat k horninám tvořícím zemský plášť. Na záběru je sopka Stromboli.

Zemský plášť je jedna z vrstev Země, shora vymezená zemskou kůrou a zespodu zemským jádrem, odděleným Gutenbergovou diskontinuitou. Z geofyzikálníhogeochemického hlediska může být zemský plášť rozdělen na svrchní a spodní plášť a přechodovou zónu, která se nachází mezi nimi.[16] Většinu současných poznatků o plášti se podařilo získat během 20. století podrobnou analýzou příchodů seismických vln. V plášti probíhá neustále plášťová konvekce, která souvisí s deskovou tektonikou a jejíž obraz můžeme získat pomocí seismické tomografie.

Zemský plášť jako celé těleso tvoří přibližně 69 % zemské hmotnosti a 84 % celkového objemu.[16] Předpokládá se, že jeho svrchní část je tvořená převážně z křemičitanů železa a hořčíků a spodní část převážně z oxidů a sulfidů železa, hořčíku a dalších kovů.[17] Hmota pláště je ve velmi pozvolném pohybu, čímž dochází k výměně tepla a materiálu mezi jednotlivými oblastmi. Teplo se nejspíše získává z rozpadu radioaktivních látek, jako je draslík.

Zemská kůra

Související informace naleznete také v článku Zemská kůra.

Tloušťka zemské kůry kolísá od 5 do 70 km v závislosti na místě, kde se nachází. Nejtenčí částí je oceánská kůra na dně oceánů složená z mafických hornin bohatých na křemík, železo a hořčík. Silnější je kontinentální kůra, která má menší hustotu a obsahuje především vrstvu složenou z felsických hornin bohatých na křemík, sodík, draslíkhliník. Za rozhraní mezi kůrou a pláštěm lze označit dva fyzikálně odlišné jevy. Především existuje diskontinuita v rychlosti seismických vln, která je známá jako Mohorovičićova diskontinuita. Za příčinu této diskontinuity je považována změna ve složení hornin od hornin obsahující plagioklasy (nahoře) až po horniny, které žádné živce neobsahují (dole). Jiným jevem je chemická diskontinuita mezi ultramafickými horninami a natavenými harzburgity, jak ji lze pozorovat v hlubokých částech oceánské kůry, které byly obdukovány do kontinentální kůry a uchovány jako ofiolitické sekvence.

Povrch

Související informace naleznete také v článku Povrch Země.

Celkový povrch Země je 510 065 284,702 km2,[zdroj? ale větší část povrchu (70,8 %) je pokryta Světovým oceánem kapalné vody, což představuje 361 126 221,569 km2.[zdroj? Oproti tomu souš zabírá 29,2 %, což odpovídá 148 939 063,133 km2.[zdroj? Oceány a pevnina nejsou na světě rozmístěny rovnoměrně, ale většina souše připadá na severní polokouli. Jižní polokoule je pak tvořena převážně oceány. Souš je na zemském povrchu rozdělena nepravidelně do sedmi velkých oblastí nazývaných kontinenty. Jsou jimi Eurasie, Amerika, Afrika, Antarktida a Austrálie. Jádra kontinentů jsou tvořeny stabilními platformami (štíty), které jsou zpravidla staré několik miliard let.

Mapa zemského povrchu (interaktivní)


N60-90, W150-180 N60-90, W120-150 N60-90, W90-120 N60-90, W60-90 N60-90, W30-60 N60-90, W0-30 N60-90, E0-30 N60-90, E30-60 N60-90, E60-90 N60-90, E90-120 N60-90, E120-150 N60-90, E150-180
N30-60, W150-180 N30-60, W120-150 N30-60, W90-120 N30-60, W60-90 N30-60, W30-60 N30-60, W0-30 N30-60, E0-30 N30-60, E30-60 N30-60, E60-90 N30-60, E90-120 N30-60, E120-150 N30-60, E150-180
N0-30, W150-180 N0-30, W120-150 N0-30, W90-120 N0-30, W60-90 N0-30, W30-60 N0-60, W0-30 N0-60, E0-30 N0-60, E30-60 N0-60, E60-90 N0-60, E90-120 N0-60, E120-150 N0-60, E150-180
S0-30, W150-180 S0-30, W120-150 S0-30, W90-120 S0-30, W60-90 S0-30, W30-60 S0-30, W0-30 S0-30, E0-30 S0-30, E30-60 S0-30, E60-90 S0-30, E90-120 S0-30, E120-150 S0-30, E150-180
S30-60, W150 S30-60, W120 S30-60, W90-120 S30-60, W60-90 S30-60, W30-60 S30-60, W0-30 S30-60, E0-30 S30-60, E30-60 S30-60, E60-90 S30-60, E90-120 S30-60, E120-150 S30-60, E150-180
S60-90, W150-180 S60-90, W120-150 S60-90, W90-120 S60-90, W60-90 S60-90, W30-60 S60-90, W0-30 S60-90, E0-30 S60-90, E30-60 S60-90, E60-90 S60-90, E90-120 S60-90, E120-150 S60-90, E150-180
každý čtverec o hraně 30 stupňů, 1800 px; projekce mapy úhlojevná, zkreslení délek a ploch

Povrch Země je značně nestejnorodý s velkou výškovou rozdílností. Oceánské oblasti tvořené oceánskou kůrou vytváří obrovské deprese, které vzhledem k nulové nadmořské výšce zasahují několik kilometrů pod její úroveň. Největšího hloubkového extrému dosahuje oceánské dno v oblasti Marianského příkopuTichém oceánu, kde dosahuje hodnoty −10 911 m (měření z roku 1995).[18] Kontinentální kůra je oproti tomu většinou nad touto nulovou hodnotou. Suchozemské maximum je dosaženo na vrcholku nejvyšší hory Země Mount Everestu a to 8 849 m (měření z let 2019 a 2020).[19]

Povrch Země je vlivem endogenních a exogenních pochodů neustále přetvářen. Vlivem vnitřních pochodů Země vznikají pásemná pohoří či tabule. Sopečná činnost vynáší z nitra Země nový materiál, který je ukládán jak vertikálně, tak i horizontálně. Horstva jsou vlivem erozivních činitelů opět zahlazována, čímž dochází ke vzniku sedimentů a rozsáhlých rovinatých oblastí.

Stratigrafie a vývoj povrchu

Související informace naleznete také v článcích Vývoj kontinentů a Geologický čas.
Animace ukazuje předpokládaný rozpad kontinentů a jejich následný posun na Zemi
Severní polokoule
Jižní polokoule

Rozvržení souše a oceánů jaké je známo dnes, nebylo po celou dobu historie Země vždy stejné, ale v průběhu času se vlivem pohybu litosférických desek značně měnilo. Měnily se jak velikosti, tak rozložení kontinentů, vznikala nová moře, která přecházela v oceány, a jiné zase zanikaly a zmenšovaly se. Často docházelo také ke vzájemným kolizím, ponořováním a dalším pohybům, které zcela měnily tvář Země. V současnosti je možné zpětně odvozovat podobu kontinentů a pohyby litosférických desek na základě mnoha poznatků. Na druhou stranu je nutno podotknout, že se tvář Země měnila po celou dobu existence Země, ale vědecká obec se není schopna shodnout na pohybech litosférických desek starších než 1,3 miliardy let.

Nejstarší doklady naznačují, že před 1,3 miliardami let se na Zemi začal formovat srážkou tří až čtyř kontinentů superkontinent Rodinie, který umožnil vznik pohoří na okrajích Severní Ameriky a západní Evropy. Předpokládá se, že superkontinent existoval přibližně půl miliardy let. Před 750 milióny let se Rodinie začala rozpadat na 8 menších kontinentů s jádrovou oblastí Laurentie odpovídající přibližně dnešní Severní Americe. Na severu se oddělila budoucí východní Gondwana a na východě pak Baltika a Sibiř. Poblíž dnešního jižního pólu vznikla západní Gondwana. Kontinenty Západní Gondwana, Laurentie, Baltika a Sibiř se spojily v oblasti jižního pólu a vytvořily Protolaurasii. Její protiváhou byla Protogondwana (budoucí východní Gondwana), která ležela z větší části na severní polokouli.

Přibližně před 310 milióny let došlo k vytvoření nového základu pro další superkontinent v podobě Pangea, který se neustále vzájemnými kolizemi zvětšoval. Okolo Pangei se nacházel oceán Panthalassa. Přibližně před 200 milióny let v období jury se Pangea začíná rozpadat na Laurasii a Gondwanu. Tyto kontinenty oddělil oceán Tethys. Přibližně před 150 milióny let se začíná rozpadat Laurasie na Severní Ameriku a Eurasii, mezi nimi vzniká Atlantský oceán, který se začal postupně zvětšovat (trvá dodnes). Rozpad Gondwany nastává před 140 milióny let, kdy se rozpadá na Atlantiku, budoucí oblasti Jižní Ameriky, Afriky, Arábie a Indie, a na Antarktidu. Před 100 milióny let vzniká Indický oceán. Desky se neustále pohybovaly dále, až vznikl současný vzhled Země. V současnosti jsou desky neustále v pohybu a tvář Země se tak v budoucnosti značně změní. Velké riftové údolí v Africe se oddělí a stane se tak novým ostrovem, zatím co se celá Afrika bude posouvat na sever a spojí se tak s Evropou, čímž zanikne Středozemní moře, ale naopak se nárazem kontinentů zvětší Alpy, podobný případ jako u Indie s Asií.

Zeměpisné souřadnice

Související informace naleznete také v článku Zeměpisné souřadnice.

Vlivem gravitačního působení je Země formována do tvaru, jenž je velmi blízký kouli. Pro přesné určení pozice na této kouli, byly zavedeny zeměpisné souřadnice, které přesně definují polohu bodu na povrchu Země. Používané souřadnice jsou souřadnice geocentrické, tedy jejich střed leží ve středu Země. Zemské těleso protíná v oblasti severního a jižního pólu rotační osa. Rovina kolmá na ni a proložená středem Země představuje rovinu rovníku, která na povrchu Země tvoří kružnici, tzv. zemský rovník. Kolmo na rovník s počátky v obou pólech procházejí poledníky, které tak leží v rovině stejné jako zemská osa. Každým bodem na zemském povrchu prochází právě jeden poledník.

Ze zemského poledníku je definována námořní míle jako délka oblouku (při povrchu Země) s vrcholovým úhlem jedné úhlové minuty. Obvod kruhu má 360 stupňů, tedy 360×60=21600 úhlových minut. Obvod Země je tedy přibližně 21600 námořních mil nebo 21600×1,852=40003,2 km. Protože otáčka Země trvá 1440 minut, je rychlost zdánlivého pohybu slunce po povrchu Země 15 námořních mil za 1 min. Velikost časového pásma je 360/24=15 úhlových stupňů.

Pro početní operace zavedl sir George Airy v roce 1851 nultý poledník procházející anglickým GreenwichemLondýně. Vzhledem k tomu, že tento nultý poledník se začal rychle používat v lodní dopravě pro námořní mapy, kde se stal dominantním, brzy byl přijat celosvětově i pro ostatní mapy.

Místní poledník procházející daným bodem určuje přesně východní a nebo západní zeměpisnou délku jako úhel mezi rovinou základního poledníku s rovinou místního poledníku daného bodu. Pro určení pozice daného bodu je potřeba ale znát i přesnou zeměpisnou šířku, která představuje úhel mezi rovinou rovníku a spojnicí středu Země s místní rovnoběžkou. Ta určuje severní a nebo jižní zeměpisnou šířku.

Kartografická zobrazení povrchu

Související informace naleznete také v článku Kartografie.

Povrch Země se zakresluje do map, které jsou tak zmenšeným rovinným obrazem. Vědní obor zabývající se výrobou map je kartografie. Samotný vznik map je spojen se vzdělaností člověka, která umožnila chápání svého okolí a snahu o jeho zakreslení.[20] S postupným vývojem představ člověka o Zemi se měnily i mapy, a to v závislosti na preferovaném tvaru Země. V novověku již definitivně zvítězil názor, že je Země kulatá, a tak se začaly mapy tomuto faktu přizpůsobovat.

Zakřivenou plochu skutečného povrchu nelze přímo rozvinout do roviny, a proto bylo potřeba najít vhodný způsob zakreslení. Vznikly referenční plochy, které se využívají pro kartografické zobrazení, jež se dělí dle zobrazovací plochy, polohy zobrazovací plochy a dle vlastnosti zakreslení.[21]

Hydrosféra

Související informace naleznete také v článku Hydrosféra.
Ekvidistantní válcová projekce složeného satelitního zobrazení Země
Histogram nadmořské výšky zemského povrchu

Země je jedinou planetou naší sluneční soustavy, jejíž povrch je pokryt kapalnou vodou. Hydrosféra pokrývá 71 % zemského povrchu (97 % z toho je mořská voda a 3 % sladká voda) a tvoří ji oceány a moře (dohromady označované jako světový oceán), na kontinentech pak řeky a jezera. Oběžná dráha, vulkanismus, gravitace, skleníkový efekt, magnetické pole a na kyslík bohatá atmosféra jsou jedinečné vlastnosti, které dohromady vytvořily ze Země vodní planetu.

Během formování Země se zde (kapalná) voda zřejmě nenacházela, protože při tehdejších podmínkách se musela vypařit.[22] Předpokládá se, že vodu přinesly na Zemi později komety, které se formovaly v místech, kde se voda nacházela jen ve formě ledu. Komety přinášejí vodu na zemi stále, ale nejvíce se jí sem dostalo v období tzv. prvního velkého bombardování 10 až 100 miliónů let po vzniku sluneční soustavy.[23]

Oběžná dráha Země leží za hranicí oběžných drah zaručujících dostatečné teplo pro kapalnou vodu. Bez některé z forem skleníkového efektu by byla voda na Zemi zamrzlá. Paleontologické nálezy naznačují, že v jednom okamžiku poté, co modrozelené sinice (Cyanobacteria) kolonizovaly oceány a vyčerpaly z atmosféry oxid uhličitý, selhal skleníkový efekt a podle jedné z teorií zemské oceány nejspíš zcela zamrzly na 10 až 100 miliónů let.

Na jiných planetách, jako je např. Venuše, byly molekuly vodních par rozloženy slunečním ultrafialovým zářením a vodík byl ionizován a odvanut slunečním větrem. Tento proces je pomalý, ale neúprosný. Jde o jednu z hypotéz vysvětlujících, proč nemá Venuše žádnou vodu. Bez vodíku kyslík reaguje s materiálem povrchu a ukládá se v pevných minerálech.

V zemské atmosféře existuje ve stratosféře tenká vrstva ozónu, která absorbuje většinu vysokoenergetického ultrafialového záření a efekt rozbíjení molekul tak potlačuje. Ozón se může tvořit jen v atmosféře s vysokým podílem volného dvouatomového kyslíku, jehož existence je závislá na biosféře (rostlinách). Magnetosféra také chrání ionosféru před přímým odfukováním slunečním větrem.

Nakonec se vulkanickou činností na povrch neustále dostává voda zevnitř planety. Zemská desková tektonika v procesu recyklace subdukuje do pláště uhlík a vodu ve formě vápencových hornin a uvolňuje je při vulkanické činnosti jako plynný oxid uhličitý a páru. Odhaduje se, že horniny v plášti mohou obsahovat až 10× více vody, než je nyní v oceánech, většina z této zadržované vody však nikdy nebude uvolněna.

Celková hmotnost hydrosféry je asi 1,4×1021 kg, přibližně 0,023 % z celkové hmotnosti Země.

Oceány a moře
Související informace naleznete také v článku Světový oceán.

Světový oceán je souvislý vodní obal planety Země, který je složen z oceánů, moří, zálivů a veškeré vodní masy, která je přímo s ním spojená, a je v něm soustředěna většina vody na Zemi. Tvoří souvislou vodní plochu se společnou hladinou, která ve skutečnosti osciluje kolem střední hodnoty vlivem vnějších faktorů (např. kvůli gravitačním vlivům Měsíce).

Jezera
Související informace naleznete také v článku Jezero.

Jezero je vodní nádrž, která je napájena povrchovou, srážkovou popř. podzemní vodou a není součástí světového oceánu. Celosvětově zaujímají jezera 1,8 % povrchu pevniny. Některá velká bezodtoká jezera se nazývají „vnitrozemskými moři“, zejména pokud obsahují slanou vodu (např. Kaspické moře, Mrtvé moře, Saltonské moře). Zkoumáním jezer se zabývá věda zvaná limnologie.

Řeky
Související informace naleznete také v článku Řeka.

Řeka je přirozený vodní tok. Ve srovnání s potokem má obvykle větší objemový průtok, délku nebo rozlohu povodí. Tok řeky můžeme rozdělit do tří částí:

  • horní tok, s převahou eroze, charakteristické je říční údolí ve tvaru „V“ s minimem usazenin
  • střední tok, kde se projevuje eroze i sedimentace, říční údolí je plošší a s již významným podílem usazenin. Koryto toku má tvar písmena „U“.
  • dolní tok s převahou sedimentace – údolí je velice ploché, díky masivní sedimentaci vznikají rozsáhlé říční nivy.

Atmosféra

Související informace naleznete také v článku Atmosféra Země.
Tajfun pozorovaný z oběžné dráhy

Země má relativně hustou atmosféru složenou ze 78 % dusíku, 21 % kyslíku, 0,93 % argonu, 0,038 % oxidu uhličitého a stopového množství jiných plynů včetně vodních par. Atmosféra chrání povrch Země před dopadem některých druhů slunečního záření. Její složení je nestabilní a silně ovlivněno biosférou. Jde především o velké množství volného dvouatomového kyslíku, který vytvářejí pozemské rostliny a bez nichž by se kyslík v atmosféře v geologicky krátkém čase sloučil s materiály z povrchu Země. Volný kyslík v atmosféře je známkou života. Současná atmosféra je druhotnou atmosférou, kterou pozměnily živé organismy. Primární atmosféra vznikla při zformování planety, obsahovala toxickou směs sopečných plynů, které se uvolňovaly při odplynování magmatu.

Tloušťka jednotlivých vrstev atmosféry (troposféry, stratosféry, mezosféry, termosféry a exosféry) na různých místech planety kolísá v závislosti na sezónních vlivech.

Obloha je na Zemi modrá, protože molekuly vzduchu rozptylují všemi směry proti očím pozorovatele ze zemského povrchu ze všech barev slunečního světla nejvíce právě modrou.

Celková hmotnost atmosféry je asi 5,1×1018 kg, tedy přibližně 0,000 000 9 celkové hmotnosti Země.

Klima

Klimatické pásy na Zemi

Klima na Zemi je dlouhodobě stabilní, ale mění se v závislosti na zeměpisné šířce. Nejteplejší je v tropech okolo rovníku, nejstudenější pak v polárních oblastech.

V historii života na Zemi se klima mnohokrát změnilo, ale vždy umožnilo přežití živých organismů. Ve čtvrtohorách dochází k opakujícím se dobám ledovým, které střídají teplejší období. Poslední doba ledová skončila před asi 10 000 lety.

Počasí

Související informace naleznete také v článku Počasí.
Satelitní snímek mraků na Zemi (NASA Moderate-Resolution Imaging Spectroradiometer)

Počasí je okamžitý stav v ovzduší na určitém místě. Je dáno stavem všech atmosférických jevů pozorovaných na určitém místě a v určitém krátkém časovém úseku nebo okamžiku. Tento stav se popisuje souborem hodnot meteorologických prvků, které byly naměřeny meteorologickými přístroji nebo zjištěny pozorovatelem (např. teplota vzduchu, stav oblačnosti, rychlost a směr větru, déšť, sněžení apod.)

Změny počasí jsou způsobeny především zemskou rotací. Ohromné masy vzduchu a vody vlivem zemské rotace mají, při pohybu v poledníkovém směru, na severní polokouli tendenci stáčet se ve směru chodu hodinových ručiček. Na jižní polokouli se tyto masy stáčejí opačným směrem.

Oblačnost

Související informace naleznete také v článku Oblačnost.

Oblačnost je mírou, jež udává stupeň pokrytí oblohy oblaky. Oblačnost je významným meteorologickým a klimatologickým prvkem. V klimatologii se vyjadřuje v desetinách pokrytí oblohy – 0/10 do 10/10. V synoptické meteorologii se používá osmin – 0/8 až 8/8 pokrytí oblohy oblaky. V obou případech znamená 0/10 nebo 0/8 jasnou bezoblačnou oblohu, 10/10 nebo 8/8 znamená zcela zataženou oblohu.

Biosféra

Podrobnější informace naleznete v článcích biosféra a život.

O živých organismech na planetě někdy říkáme, že tvoří „biosféru“. Všeobecně se soudí, že život vznikl před 3,7 miliardami let.[24] Země je jediným místem ve známém vesmíru, kde je zcela nepochybná existence života, a někteří vědci věří, že život je ve vesmíru spíše řídkým jevem.

Zemská biosféra je rozdělena do množství biomů, osídlených vždy zhruba typickými organizmy, tedy např. flórou a faunou. Na souši rozdělují biomy především zeměpisná šířka a nadmořská výška. Zemské biomy ležící za polárním kruhem nebo ve velké výšce nad mořem jsou pusté a téměř prosté rostlin a živočichů, nejpočetněji osídlené biomy leží poblíž rovníku. Nejrozšířenější skupinou organizmů jsou však bakterie[25] (asi 5×1030 jedinců[26][27]), jednobuněčné mikroskopické organizmy. Podobné archebakterie jsou rovněž velice rozšířené, a navíc jsou schopné žít v extrémních podmínkách prostředí. Tyto jednoduché organizmy byly zřejmě prvními obyvateli Země. Až před asi 1,8 – 1,3 miliardami lety vznikla eukaryota, do nichž řadíme i dnešní mnohobuněčné skupiny, jako jsou rostliny nebo živočichové. Rostliny se zpravidla vyživují pomocí fotosyntézy, živočichové se živí organickými látkami (heterotrofně).[28] Mezi živočichy patří i člověk, který osídlil Zemi v posledních několika milionech let.

Magnetické pole a radiace

Související informace naleznete také v článku Magnetické pole Země.
Schéma zemské magnetosféry. Sluneční vítr proudí zleva doprava.

Na rozhraní pevného vnitřního jádra a polotekutého vnějšího jádra dochází k pohybu těchto dvou sfér vůči sobě, čímž se vnitřek Země chová jako dynamo a dochází tak ke generování magnetického pole. Magnetické pole vystupuje z nitra planety v podobě uzavřených siločar a sahá až několik desítek tisíc km nad povrch okolo Země. Planeta je tak chráněna štítem v podobě magnetosféry, který odklání dopadající vysokoenergetické částice vycházející ze Slunce.[29] Působením Slunce dochází k tomu, že magnetosféra není na všechny strany stejně velká, ale na přivrácené straně ke Slunci je zdánlivě zatlačena blíže k Zemi a na odvrácené straně je naopak více protažena do okolního vesmíru.

Radiační pásy

Související informace naleznete také v článku Van Allenovy pásy.

Geomagnetické pole odklání a zachytává protony a elektrony, které jsou k planetě vysílány ze Slunce. Tyto energetické částice jsou následně odkláněny do míst, kde dochází k jejich akumulaci do několika oblastí okolo Země. Tyto oblasti se nazývají Van Allenovy pásy.[29] Pásy se rozdělují na vnitřní a vnější v závislosti k poloze Země. K objevení vnitřních pásů došlo po vypuštění první americké sondy Explorer 1 a vnější pásy byly objeveny na základě údajů ze sovětské sondy Luna 1.

Van Allenovy pásy začínají ve výšce přibližně 400 km nad zemským povrchem a sahají až do vzdálenosti 50 000 km. Vnitřní radiační pás je tvořen zhuštěním částic v oblasti okolo 3000 km nad povrchem. Těmito částicemi jsou protony s velkou energií. Vnější oblast zhuštění se nachází ve výšce zhruba 15 000 km; je tvořena vysokoenergetickými elektrony.

Oběžná dráha

Země oběhne Slunce za 365,2564 průměrných slunečních dní (1 siderický rok). Ze Země to dává zdánlivý pohyb Slunce vzhledem ke hvězdám o rychlosti 1 °/den, tj. pohyb směrem na východ o sluneční či měsíční průměr za každých 12 hodin. Rychlost oběhu Země je v průměru asi 30 km/s, což stačí k uražení vzdálenosti zemského průměru (~12 700 km) za 7 minut a vzdálenosti Země – Měsíc (384 000 km) za 4 hodiny.

Země má jeden přirozený satelit, Měsíc, který kolem ní oběhne jednou za 27 1/3 dnů. Ze Země se to jeví jako pohyb Měsíce vzhledem ke Slunci a hvězdám o rychlosti 12 °/den, tj. o měsíční poloměr směrem na východ každou hodinu.

Viděno ze zemského severního pólu jsou pohyb Země, jejího měsíce a její rotace kolem osy všechny proti směru hodinových ručiček. Roviny orbity a rotace se přesně nekryjí. Zemská osa je vychýlena zhruba o 23,5 stupňů proti rovině Země – Slunce (proto se střídají roční období); a rovina Země – Měsíc má sklon asi 5 stupňů proti rovině Země–Slunce (jinak bychom pozorovali zatmění každý měsíc). Poloměr Hillovy sféry (sféry vlivu) Země je asi 1,5 Gm (1,5 miliónu km), do čehož se oběžná dráha jediného přirozeného satelitu (Měsíce) pohodlně vejde.

V inerciální vztažné soustavě podléhá zemská osa pomalému precesnímu pohybu s periodou 25 725 let, stejně jako nutaci s hlavní periodou 18,6 let. Tyto pohyby jsou vyvolány diferenciálním vlivem Slunce a Měsíce na rovníkovou deformaci způsobenou zploštěním Země. Ve vztažné soustavě spojené se zemským tělesem je její rotace také lehce nepravidelná kvůli pohybu pólů. Pohyb pólu je kvaziperiodický, obsahující roční složku a složku se čtrnáctiměsíčním cyklem zvanou Chandlerova perioda. Rychlost rotace vlivem slapových sil v průběhu času klesá, jev je známý jako proměnná délka dne.

V současné době nastává zemský perihel vždy kolem 3. ledna a afel kolem 4. července. V jiných dobách tomu bylo jinak, viz precese a Milankovičovy cykly.

Rotace kolem své osy

Související informace naleznete také v článku Rotace Země.
Snímky zemské rotace pořízené DSCOVR EPIC 29. května 2016 několik týdnů před slunovratem

Rotace Země kolem její osy spojující severní a jižní pól trvá 23 hodin, 56 minut a 4,091 sekund (1 siderický den). Ze Země se hlavní část zdánlivého pohybu nebeských těles na obloze (kromě meteorů, které jsou mezi atmosférou a nízko obíhajícími satelity) jeví jako pohyb směrem na západ o rychlosti 15 °/h = 15'/min, tedy o sluneční nebo měsíční průměr každé dvě minuty. Z fyzikálního hlediska se Země chová jako obří setrvačník. Zemská osa nemá neměnnou polohu, např. silné zemětřesení v Japonsku v roce 2011 ji vychýlilo asi o 16 cm.[30]

Časová pásma

Související informace naleznete také v článku Časové pásmo.

Vlivem rotace Země kolem své osy se postupně přesunuje oblast odkloněná od Slunce, což se na povrchu projevuje jako příchod a odchod noci. Z tohoto důvodu vznikla mezinárodní dohoda, která rozdělila celý zemský povrch na 24 časových pásem se středy na polednících po 15° a šířce od −7,5° do +7,5° vzhledem k střednímu poledníku.[31] Pásmový čas, který je stejný v každém pásmu, se počítá dle času na středním poledníku (0°, 15°, 30° atd.).[31] Tento čas se následně dopočítává vzhledem ke koordinovaného světového času, kdy posun je většinou určen celistvým počtem hodin a to buď v podobě plus či minus.

Střídání ročních období

Související informace naleznete také v článku Roční období.
Sklon zemské osy

Vlivem sklonění rotační osy Země o 23,5° se mění množství světla a tepla, které dopadne během dne na osvětlenou část severní či jižní polokoule. Tato skutečnost se na Zemi projevuje střídáním ročních období v pořadí jaro, léto, podzim a zima. Jelikož se ke Slunci vždy více přivrací pouze jedna polokoule, je střídání ročních dob vzájemně prohozené, a tedy se střídá mezi severní a jižní polokoulí. Platí, že když je na jižní polokouli léto, je na severní zima a opačně.

Vzhledem k tomu, že oběžná dráha Země je eliptická, mění se množství světla a tepla v dané vzdálenosti od Slunce. Proto jsou zimy na severní polokouli mírnější, jelikož v té době je Země v oblasti perihélia, a tedy nejblíže Slunci. Naopak léta na severní polokouli jsou oproti létům na jižní polokouli studenější, Země se nachází nejdále od Slunce. Největšího přiblížení ke Slunci Země dosáhne při perihelu, krátce po zimním slunovratu. Nejdále je pří afelu v době letního slunovratu. Země se současně dle Keplerových zákonů nepohybuje po celé své dráze stejně rychle, ale v době největšího přiblížení ke Slunci má současně i největší oběžnou rychlost, což se projevuje v tom, že léto je na jižní polokouli kratší než na polokouli severní. Zima je naopak kratší na severní polokouli.[32] Pro příklad léto na severní polokouli trvá přibližně 93 dní a 14 hodin a na jižní pouze 89 dní a 1 hodinu.[32]

Měsíc

Související informace naleznete také v článku Měsíc.
Země vycházející nad Měsícem, snímek pořízený z Apolla 8 za jeho obletu Měsíce, 24. prosince 1968

Měsíc či též Luna je relativně velké terestrické těleso, jehož průměr je asi jedna čtvrtina zemského. S výjimkou Plutova Charona je to v poměru k velikosti planety či trpasličí planety největší měsíc ve sluneční soustavě. Přirozené satelity obíhající kolem planet se nazývají „měsíce“ právě podle pozemského Měsíce.

Název Průměr (km) Hmotnost (kg) Velká poloosa (km) Oběžná doba
Měsíc 3 474,8 7,349×1022 384 400 27 dnů, 7 hodin, 43,7 minut

Gravitační síly mezi Zemí a Měsícem způsobují na Zemi příliv a odliv. Tatáž síla působící na Měsíc vedla k jeho vázané rotaci: jeho rotační perioda je rovna době, která je potřebná k jeho oběhu kolem Země. Následkem toho je přivrácen k planetě stále stejnou stranou. Jak Měsíc obíhá Zemi, jsou Sluncem osvětlovány různě velké části přivrácené strany, což vede k měsíčním fázím. Temná polokoule je oddělena od osvětlené slunečním terminátorem.

Měsíc dramaticky ovlivnil vývoj života tím, že brání prudkým změnám podnebí. Paleontologické důkazy a počítačové simulace ukazují, že výchylka zemské osy je stabilizována jeho slapovými interakcemi. Někteří teoretikové věří, že bez této stabilizace by točivý moment od Slunce a planet na zemskou rovníkovou deformaci způsobil chaotickou nestabilitu rotační osy, jako je tomu u Marsu. Pokud by se zemská osa rotace přiblížila rovině ekliptiky, podnebí by začalo být extrémně nepříznivé s obrovskými sezónními rozdíly. V létě by byl pól nasměrován přímo směrem ke Slunci, zatímco po celou zimu by byl od Slunce odvrácen. Planetologové, kteří tento jev studovali, prohlašují, že by vedl k vyhynutí všech větších zvířat a vyšších forem života. Toto téma však zůstává kontroverzním, další studie Marsu — který sdílí zemskou rotační periodu a vychýlení osy, nikoliv však velký měsíc ani tekuté jádro — mohou poskytnout na tuto problematiku jiný náhled.

Gravitační působení Měsíce spolu se slapovými jevy způsobuje nepatrné zpomalování zemské rotace. Protože platí zákon zachování hybnosti, Měsíc se díky tomu zvolna vzdaluje od Země.

Země a Měsíc ve správném poměru velikosti i vzdálenosti

Široce přijímaná teorie o původu Měsíce prohlašuje, že se zformoval po kolizi rané Země s protoplanetou velikosti Marsu (teorie velkého impaktu). Tato hypotéza (mezi jinými věcmi) vysvětluje relativní nedostatek železa a těkavých prvků na Měsíci a fakt, že jeho složení je téměř identické se zemskou kůrou.

Měsíc má, viděno ze Země, téměř stejnou úhlovou velikost jako Slunce (které je však 400× vzdálenější). Díky tomu lze na Zemi pozorovat úplná i prstencovitá zatmění Slunce.

Další planetky

Dráha asteroidu Cruithne, který má se Zemí sladěnou oběžnou dráhu

Kromě Měsíce není znám žádný přirozený vesmírný objekt, který by dlouhodobě obíhal kolem Země. Bylo však objeveno několik planetek, které obíhaly kolem Země krátkou dobu.[33]

  • V roce 2006 byl nalezena planetka 2016 RH120. Obíhal kolem Země do poloviny roku 2017, kdy její gravitační pole opustila.
  • V roce 2020 bylo projektem Catalina Sky Survey (CSS) objeveno těleso 2020 CD3. Analýzou dráhy se zjistilo, že v tu dobu obíhalo Zemi již nejméně jeden rok. Nejdále bylo od ní 1,2 milióny km, nejblíže se přiblížilo na 41 000 km
    Podle jeho jasnosti by mělo jít o objekt o velikosti 1–2 m. Vzhledem k neobvyklé dráze není vyloučeno, že jde o umělé těleso, např. poslední stupeň nosné rakety.

Existují však planetky, které sice přímo neobíhají Zemi, ale jsou ovlivňovány jejím gravitačním polem a mají s ní sladěnou oběžnou dráhu.

  • Od roku 1986 je znám asi 5 km velký asteroid 3753 Cruithne, který má sice protáhlou eliptickou dráhu (k Slunci se přibližuje téměř na vzdálenost Merkuru a v nejvzdálenějším bodě dráhy je až za drahou Marsu), ale jeho oběžná doba je prakticky shodná se Zemí: 364,01 dne.
  • V roce 2011 byla pomocí infračerveného kosmického dalekohledu WISE objevena planetka 2010 TK7, která obíhá Slunce po téměř stejné dráze jako Země, ale 60° před ní.[34] Je to tedy první známý trojan Země. Jeho velikost je však jen několik set metrů.

Slapové jevy

Související informace naleznete také v článku Slapové jevy.

Měsíc spolu se Sluncem působí svým gravitačním vlivem – slapovými silami – na Zemi a způsobuje relativně malé deformace jejího tvaru. Nejznámějšími a nejvíce viditelnými slapovými jevy jsou příliv a odliv. Vzhledem k periodě, s jakou zdánlivě obíhá Měsíc kolem Země – tedy 24 h 50 min, se projevují s poloviční periodou přibližně 12 h (během jednoho dne nastane dvakrát příliv a dvakrát odliv).

Obyvatelnost

Sedm kontinentů Země
     Jižní Amerika
     Antarktida
     Evropa
     Afrika
     Asie
     Austrálie

Přítomnost velkého množství živých organismů na Zemi je zjevná již z vesmíru. Poukazují na to obrovské zalesněné plochy, vystupující korálové útesy a v neposlední řadě i velké množství kyslíku v zemské atmosféře, který se tam dostal jako produkt několika miliard let fotosyntézy sinic a rostlin.

Jako jediná známá planeta, na níž se vyvinul a přetrval život, se Země stala prototypem obyvatelné planety. Vzdálenost Země od Slunce, přítomnost atmosféry a její vhodné chemické složení umožňují, aby se na většině jejího povrchu udržela voda v kapalném skupenství. Tím je splněna základní podmínka, kterou podle současných představ potřebuje život ke svému vzniku. Od svého vzniku obývají živé organismy tuto planetu už asi 3,8 miliardy let, což představuje přes čtyři pětiny její historie.

V současnosti je Země obydlena podle odhadů řádově 1033 jednotlivých živých organismů, které patří do více než 1,5 milionu druhů. Formy života jsou rozmanité od nejjednodušších bezjaderných mikroskopických jednobuněčných (prokaryot) přes větší jednobuněčné prvky s jádrem až po mnohobuněčné; řasy, rostliny, houby a živočichy. Současné druhy však pravděpodobně představují pouze zlomek všech druhů, které se na Zemi vyskytovaly v minulosti. Živé organismy obývají celý povrch Země, určitou vrstvu pod povrchem a spodní části její atmosféry. Nacházejí se i na těch (z hlediska člověka) nejextrémnějších stanovištích: v hlubinách oceánských příkopů bez slunečního světla a tepla, kde je vše vystaveno obrovskému hydrostatickému tlaku, v horkých sirných pramenech, v Antarktickém ledu, v nejsušších pouštích i v oblastech bez dýchatelného kyslíku. Oblast Země obydlena živými organismy se nazývá biosféra.

Biosféra a neživé složky přírody, jako litosféra, hydrosféra a atmosféra, jsou navzájem těsně propojeny. Podílejí se na koloběhu mnoha látek, z nichž nejznámější je koloběh vody. V přírodě je však možné popsat koloběh mnoha klíčových sloučenin a prvků, například koloběh kyslíku, koloběh uhlíku, koloběh vápníku a podobně. Na všech těchto procesech se podílejí jak živé, tak neživé složky přírody a život na Zemi by bez těchto koloběhů nebyl možný.

Země je také domovskou planetou lidstva, které žije v přibližně 200 nezávislých státech. K dubnu 2014 žilo na Zemi přibližně 7 158 138 650 lidí.[35] Část povrchu Země, která je obydlena nebo zřetelně změněna člověkem, se nazývá noosféra. Budoucnost planety Země a otázka její další obyvatelnosti pro člověka i život obecně je v současnosti hojně diskutovaným tématem. Jisté je, že v časovém horizontu příštích stovek milionů až miliard let obyvatelnost Země pro většinu forem života zcela zanikne.[36]

Země v kultuře

Jméno planety

Planeta Země má obrovské množství názvů v závislosti na jednotlivých kulturách či jazycích. Mezi nejpoužívanější patří označení Gaia, které vyjadřuje slovní spojení „matka Země“. Jedná se o dceru Chaosu a manželku Úranovu, kterému porodila Titány, jež později vyvolali válku mezi giganty a olympskými bohy.[37]

Odkazy

Poznámky

  1. Podle posledních měření je současná hodnota celkového tepelného toku z nitra Země přes její povrch 44 TW. Z měření toku neutrin, vznikajících při radioaktivních rozpadech uvnitř Země, přitom vyplývá, že teplo z radioaktivních rozpadů se podílí jen asi z poloviny na celkovém tepelném toku, zbytek je pravděpodobně tvořen prvotním teplem z období formování planety.[6][7]

Reference

  1. KNITTICH, Jakub. How Earth got its name . todayifoundout.com, 6.9.2010 . Dostupné online. (anglicky) 
  2. a b c KLEZCEK, Josip. Velká encyklopedie vesmíru. 1. vyd. Praha: Academia, 2002. ISBN 80-200-0906-X. S. 127. 
  3. a b c d e KNITTICH, Jakub. Vznik a vývoj Země . Astronomia - Astronomie pro každého . Dostupné online. 
  4. https://phys.org/news/2020-02-earth-faster-previously-thought.html - The Earth formed much faster than previously thought
  5. https://www.sciencedaily.com/releases/2020/02/200220130509.htm
  6. The KamLAND Collaboration (A. Gando, Y. Gando, K. Ichimura, H. Ikeda, K. Inoue, Y. Kibe, Y. Kishimoto, M. Koga, Y. Minekawa, T. Mitsui, T. Morikawa, N. Nagai, K. Nakajima, K. Nakamura, K. Narita, I. Shimizu, Y. Shimizu, J. Shirai, F. Suekane, A. Suzuki, H. Takahashi, N. Takahashi, Y. Takemoto, K. Tamae, H. Watanabe, B. D. Xu, H. Yabumoto, H. Yoshida, S. Yoshida, S. Enomoto, A. Kozlov, H. Murayama, C. Grant, G. Keefer, A. Piepke, T. I. Banks, T. Bloxham, J. A. Detwiler, S. J. Freedman, B. K. Fujikawa, K. Han, R. Kadel, T. O’Donnell, H. M. Steiner, D. A. Dwyer, R. D. McKeown, C. Zhang, B. E. Berger, C. E. Lane, J. Maricic, T. Miletic, M. Batygov, J. G. Learned, S. Matsuno, M. Sakai, G. A. Horton-Smith, K. E. Downum, G. Gratta, K. Tolich, Y. Efremenko, O. Perevozchikov, H. J. Karwowski, D. M. Markoff, W. Tornow, K. M. Heeger, M. P. Decowski). Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geoscience . 17. červenec 2011. Abstrakt. Dostupné online. ISSN 1752-0908. DOI 10.1038/ngeo1205. (anglicky) 
  7. What keeps the Earth cooking? (PhysOrg, 17. 7. 2011) – popularizační článek k předchozí referenci (anglicky)
  8. a b KLEZCEK, Josip. Velká encyklopedie vesmíru. 1. vyd. Praha: Academia, 2002. ISBN 80-200-0906-X. S. 129. 
  9. a b KLEZCEK, Josip. Velká encyklopedie vesmíru. 1. vyd. Praha: Academia, 2002. ISBN 80-200-0906-X. S. 130. 
  10. STERN, David. Planetary Magnetism . NASA . Dostupné v archivu pořízeném dne 2006-06-30. (anglicky) 
  11. Earth2014 global topography (relief) model . Institut für Astronomische und Physikalische Geodäsie . Dostupné v archivu pořízeném dne 2016-03-04. 
  12. Oldest rock shows Earth was a hospitable young planet . Spaceflightnow.com, 2001-01-14 . Dostupné online. (anglicky) 
  13. KELLER, Marcus. Composition of Core Elements vs the Bulk Earth . EarthRef.org . S. 1. Dostupné online. (anglicky) 
  14. a b Přírodní obraz Země pro I. ročník gymnázia, strana 46
  15. Neil F. Comins DEU-str.82
  16. a b Leccos - špalíček moudrosti a poučení - zemský plášť . . Dostupné v archivu pořízeném dne 2014-04-29. 
  17. Přírodní obraz Země pro I. ročník gymnázia, strana 47
  18. Leading the World in Deep-Sea Exploration Technology . Japan Atlas Advanced technology . Dostupné online. (anglicky) 
  19. Čína a Nepál přeměřily Mount Everest. Je vyšší, než se tvrdilo. ČT24 . Česká televize, 2020-12-08 . Dostupné online. 
  20. Zdroj:https://cs.wikipedia.org?pojem=Země
    Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


'Ndrangheta
Úřad dokumentace a vyšetřování zločinů komunismu
Úřednická vláda
Úmrtí v roce 2021
Úmrtí v roce 2022
Únětická kultura
Únor 1948
Ústřední výbor Komunistické strany Československa
Ústava Československé republiky
Ústava Československé socialistické republiky
Ústavní soud České republiky
Ústavní zákon o československé federaci
Ústav pro studium totalitních režimů
Čína
Čínsko-sovětské konflikty (1969)
Čínsko-sovětský rozkol
Časně slovanské období
Časová osa ruské invaze na Ukrajinu (2022)
Červený obr
Česká a Slovenská Federativní Republika
Česká socialistická republika
Česká televize
Česká tisková kancelář
Česká Wikipedie
České knížectví
České království
České národní obrození
České předsednictví v Radě Evropské unie 2009
České Slezsko
České stavovské povstání
České země za první světové války
Český rozhlas
Český rozhlas Dvojka
Český stát za vlády Jagellonců
Český statistický úřad
Česko
Československá lidová armáda
Československá měnová reforma (1953)
Československá republika (1948–1960)
Československá socialistická republika
Československá televize
Československé parlamentní volby 1946
Československý rozhlas
Československo
Československo-sovětské přátelství
Čierna nad Tisou
Čistky
Členský stát Evropské unie
ČTK
Řím
Řecko
Řeka
Školství
Španělsko
Štěpán Trochta
Švédsko
Železná opona
Živočichové
1. květen
1. leden
10. říjen
10. listopad
11. listopad
11. září
12. listopad
13. červen
13. prosinec
14. červen
17. leden
17. listopad
1711
1816
19. listopad
1922
1941
1945
1946
1948
1949
1950
1952
1954
1957
1965
1968
1969
1972
1975
1978
1987
1988
1989
1991
1992
1993
1996
1997
1998
2. listopad
20. únor
20. srpen
2002
2003
2004
2005
2006
2007
2009
2011
2022
21. srpen
22. říjen
23. říjen
23. leden
25. únor
25. říjen
26. duben
27. srpen
28. říjen
29. říjen
3. listopad
30. říjen
31. říjen
31. březen
31. prosinec
4. červen
4. prosinec
461
6. listopad
9. listopad
Achtung Baby
Acquis communautaire
Aeroflot
Afghánistán
Akce 77
Akvizice
Albánie
Albánská lidová republika
Albánská lidová socialistická republika
Aleš Brichta
Alexander Dubček
Alexej Čepička
Alexej Kosygin
Alois Indra
Andrej Andrejevič Gromyko
Andrej Antonovič Grečko
Andrej Babiš
Anticharta
Antonín Kapek
Antonín Novotný
Antonín Zápotocký
Antonov An-12
Antonov An-24
Anton Myrer
Arakain
Archiv výtvarného umění
Argentinské tango
ASU-57
ASU-85
Athény
Augustin Navrátil
Austrálie
Autoritní kontrola
Avenida Corrientes
Bílý trpaslík
Bójové
Beatová síň slávy
Berlínská zeď
Bill Clinton
Biskup
Blue Effect
Bohemia Energy
Boj o rozhlas (1968)
Branislav Hronec
Bratři Itálie (politická strana)
Bratislava
Bratislavská deklarace
Brazílie
BRDM-1
Brexit
Brusel
BTR-152
Bulharská komunistická strana
Bulharská lidová republika
Buržoazie
Castell
Centrální plán
Charta 77
Charterový let
Chceme světlo!
Chruščovovské tání
Citron (hudební skupina)
Commons:Featured pictures/cs
Covid-19
cs:Usnesení vlády k žádosti České republiky o přijetí do Evropské unie
Cyril Svoboda
Dálnice
Díválí
Dýchací soustava
Dějiny Česka
Dělnicko-rolnická vláda
Důl Svornost
Daň z přidané hodnoty
David Koller
Demokracie
Demonstrace (protest)
Demonstrace na Rudém náměstí v roce 1968
Den vzniku samostatného československého státu
De Generace
Difuze
Disent
Divoký srdce
Dluhová krize v eurozóně
Doba římská na území Česka
Doba bronzová na území Česka
Dodavatel poslední instance
Dovoz
Drážďany
Drahomír Kolder
Druhá republika
Druhá světová válka
Dvoustranně souměrní
Ekonomická krize od 2007
Elon Musk
Emigrace
Encyklopedie
Eneolit na území Česka
Enver Hodža
Epitelová tkáň
ERM II
Estonsko
Etc...
Etiopie
Euro
Eurobarometr
Eurokomunismus
Evžen Plocek
Evropa
Evropská komise
Evropská měnová unie
Evropská migrační krize
Evropská rada
Evropská společenství
Evropská unie
Evropský hospodářský prostor
Evropský zatýkací rozkaz
Ferdinand I. Habsburský
Fidel Castro
Filip Topol
Finsko
Flamengo
Florian Siwicki
Fondy Evropské unie#PHARE
Fonograf
Framus Five
Francie
Francisco Franco
František Josef I.
František Kotva
František Kriegel
Frederik Willem de Klerk
Frontman
Gama Sagittae
Gemeinsame Normdatei
Generální tajemník ÚV KSČ
Generální tajemník ústředního výboru Komunistické strany Číny
George H. W. Bush
Giorgia Meloniová
Glasgow
Glasnosť
Gonochorismus
Grónské referendum o Evropských společenstvích 1982
Gudžarát
Gustáv Husák
Habsburkové
Habsburská monarchie
Halloween
Harry Potter a Tajemná komnata (film)
Havlíčkův Brod
Heath Freeman
Heliodor Píka
Helsinky
Hermafrodit
Hlavní strana
Hltan
HMAS Sydney (D48)
Hmotná nouze
Hnědý trpaslík
Hostitel
Hrubý domácí produkt
Hudba
Hudba Praha
Hudba Praha & Michal Ambrož
Hudba Praha (album)
Hudebník
Hudební žánr
Hudební nástroj
Hudební skladatel
Hudební soubor
Husitství
Hvězdná velikost
Ilegální obchod s drogami
Iljušin Il-14
Imatrikulace (letectví)
Indie
Industrializace
International Standard Serial Number
Internet Archive
Invaze
Invaze vojsk Varšavské smlouvy do Československa
Invazní pruhy
IROZHLAS
Irsko
Island
Itálie
Ivan Jakubovskij
Ivan Král
Ivan Martin Jirous
Ivo Tretera
Jáchymov
János Kádár
Jair Bolsonaro
Jakov Alexandrovič Malik
Jana Altmannová
Jan Anastáz Opasek
Jan Bula
Jan Dus
Jan Haubert
Jan Hrubý (hudebník)
Jan Ivan Wünsch
Jan Masaryk
Jan Palach
Jan Patočka
Jan Rejžek
Jan Spálený
Jan Zajíc
Jan Zrzavý
Jaroslav Šaroch
Jasná Páka
Jednorodí
Jednotné zemědělské družstvo
Jerry Lee Lewis
Jiří Šindelář (hudebník)
Jiří Jelínek (baskytarista)
Jiří Kraus
Jiří Schelinger
Jiří z Poděbrad
Jižní Korea
Johannes Kepler
Josef Špaček (politik KSČ)
Josef Beran
Josef Charvát (odbojář)
Josef Chuchma
Josef Hlavatý
Josef Hlouch
Josef II.
Josef Klaus (politik)
Josef Pavel (1908)
Josef Smrkovský
Josef Zieleniec
Josif Vissarionovič Stalin
Josip Broz Tito
Jozef Púčik
Jugoslávie#Socialistická Jugoslávie
Junák – český skaut
Jupiter (planeta)
Jurij Andropov
Justiční vražda
Kádrové důvody
Kádrový posudek
Kabát (hudební skupina)
Kabinová lanová dráha na Ještěd
Kalábrie
Kamil Střihavka
Kardinál
Karel Hoffmann (politik)
Karel III. Britský
Karel IV.
Karel Malík
Katapult (hudební skupina)
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Kaunas
Kauza Čapí hnízdo
KGB
Klad
Klaudios Ptolemaios
Klement Gottwald
Kmen (biologie)
Kodaň
Kodaňská kritéria
Kolektivizace v Československu
Komunisté
Komunistická strana
Komunistická strana Číny
Komunistická strana Československa
Komunistická strana Španělska
Komunistická strana Slovenska (1948)
Komunistický režim
Komunistický režim v Československu
Koncentrační tábor
Konference OSN o změně klimatu 2021 v Glasgow
Konstantin Babickij
Kontrarevoluce
Konzervativní strana (Spojené království)
Korejská válka
Kormoran (1940)
Krausberry
Krucipüsk
Kuba
Kulak
Kulomet SG-43
Kult osobnosti
Kurt Waldheim
Květen 1968 ve Francii
Kypr
Kytara
Ladislav Adamec
Ladislav Hosák
Lafetace
Lajka
Lamezia Terme
Latina
Leonid Iljič Brežněv
Leszek Engelking
Letiště
Letiště Brno-Tuřany
Letiště Praha Ruzyně
Libius Severus
Libor Pešek
Library of Congress Control Number
Lidová demokracie
Lidové milice
Lidská práva
Listopad
Listopad 1989
Litva
Lotyšsko
Lou Fanánek Hagen
Luboš Andršt
Luboš Pospíšil
Lubomír Štrougal
Lucemburk
Lucemburkové
Ludvík Kandl
Ludvík Svoboda
Luiz Inácio Lula da Silva
Lyndon B. Johnson
Maďarská lidová republika
Maďarská socialistická dělnická strana
Maďarsko
Maastrichtská kritéria
Maelström
Maják (album)
Malta
Mao Ce-tung
Maršál Sovětského svazu
Marek Vokáč
Marie Švermová
Marie Charousková
Marie Terezie
Markéta Vojtěchová Ambrožová
Markomani
Marsyas (hudební skupina)
Martin Dzúr
Martin Kraus (zpěvák)
Marxismus
Matěj Belko
Memorial
Menstruační vložka
Metro
Mezenchym
Mezinárodní astronomická unie
Mezinárodní standardní identifikátor jména
Mezinárodní vesmírná stanice
Michael Šimůnek
Michail Lomonosov
Michail Suslov
Michal Ambrož
Michal Ambrož a Hudba Praha
Michal Lefčík
Michal Pavlíček
Michal Prokop
Miki Volek
Mikrofotografie
Milada Horáková
Milan Hlavsa
Miloš Jakeš
Miloš Zeman
Ministerstvo práce a sociálních věcí České republiky
Miroslav Žbirka
Miroslav Středa
Mnichovská dohoda
Monarchismus
Mongolsko
Morava
Moskevský protokol
Moskva
Motolice
MusicBrainz
Mysterium Cosmographicum
Náměstí Svobody (Brno)
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní fronta Čechů a Slováků
Národní knihovna České republiky
Národní shromáždění Československé socialistické republiky
Německá demokratická republika
Německá okupace Čech, Moravy a Slezska
Německo
Nadace Wikimedia
Naréndra Módí
Nationale Volksarmee
Nejvyšší sovět Sovětského svazu
Neodermata
Neodermis
Neolit na území Česka
Nepohlavní rozmnožování
Nervová soustava
Nicolae Ceaușescu
Nikolaj Viktorovič Podgornyj
Normalizace
Nova
Nusle
Oběžná dráha
Oběhová soustava
Obelisk (Buenos Aires)
Ocel
Odboj během druhé světové války
Odsun sovětských vojsk z Československa
Oldřich Černík
Oldřich Říha
Oldřich Švestka
Oldřich Veselý
Olympic
Opičí selfie
Orel (spolek)
Organizace spojených národů
Osvald Závodský
Ota Petřina
Otmar Brancuzský
Pád mostu v Gudžarátu
Přídělový systém
Předseda vlády
Přemyslovci
Připojení Hlučínska k Československu
Paleozoikum
Památník Vojna u Příbrami
Paměť národa
Pandemie covidu-19
Pandemie covidu-19 v Česku
Parti communiste français
Pavel Švanda (křesťanský aktivista)
Pavel Telička
Pavel Váně
Pavel Wonka
Pavol Molnár
Perestrojka
Petro Šelest
Petr Fiala
Petr Janda
Petr Kalandra
Petr Korál
Petr Novák
Petr Placák
Petr Skoumal
Plánovaná ekonomika
Planeta
Platónské těleso
Ploštěnci
Ploštěnky
Ploutvonožci
Plzeňské povstání (1953)
Pohlavní rozmnožování
Pohraniční stráž
Polarizace (elektrodynamika)
Politbyro
Polská lidová republika
Polská sjednocená dělnická strana
Polsko
Pomocný technický prapor
Portál:Česko
Portál:Aktuality
Portál:Doprava
Portál:Evropská unie
Portál:Geografie
Portál:Historie
Portál:Hudba
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Obsah
Portál:Příroda
Portál:Sport
Portugalsko
Poslanecká sněmovna Parlamentu České republiky
Post Bellum
Poučení z krizového vývoje
Právo (deník)
Průmyslová revoluce v Česku
Pražské jaro
Pražský výběr
Praga
Praha
Praní špinavých peněz
Pravda (noviny)
Prehistorie Česka
Prezident České republiky
Prezident Brazílie
Proces se skupinou Milady Horákové
Proces se Slánským
Proces s buržoazními nacionalisty
Proces s krajskými tajemníky
Progres 2
Prophets of Rage
Protektorát Čechy a Morava
Protesty v Íránu (2022)
Protiokupační demonstrace v roce 1969
Protonefridie
Provolání Všemu lidu ČSSR
První pětiletka (Československo)
První republika
První vláda Klementa Gottwalda
První vláda Oldřicha Černíka
Prvoústí
Public Enemy
Q114943882
Q12036674
Q12036674#identifiers
Q12036674#identifiers|Editovat na Wikidatech
Q1773668
Rada bezpečnosti OSN
Rada Evropské unie
Rada vzájemné hospodářské pomoci
Radim Hladík
Radio Beat
Rakouské císařství
Rakousko
Rakousko-Uhersko
Reálný socialismus
Referendum o přistoupení České republiky k Evropské unii
Reichsbrücke
Rekatolizace
Revoluce 1848–1849 v Rakouském císařství
Ricimer
Rishi Sunak
Robert Browning
Rock
Roman Dragoun
Ron Flowers
Ross Perot
Rovnost (pracovní tábor)
Rozšiřování Evropské unie
Rozhlas po drátě
Rudé náměstí
Rudolf II.
Rudolf Kirchschläger
Rudolf Slánský
Rumunská socialistická republika
Rumunsko
Ruská invaze na Ukrajinu (2022)
Rusko
Sámova říše
Sázava
Sídliště
Síra
Saab 32 Lansen
Sametová revoluce
SARS-CoV-2
Saská Kamenice
Sbor národní bezpečnosti
Schengenský prostor
Schizocoel
Severní Čechy
Severní Korea
Severočeský kraj
Severoatlantická aliance
Severomoravský kraj
Seznam britských králů
Seznam osobností vyznamenaných 28. října 2022
Seznam osob popravených z politických důvodů v Československu 1948–1989
Seznam premiérů Česka
Seznam premiérů Itálie
Seznam premiérů Spojeného království
Si Ťin-pching
Sjednocená socialistická strana Německa
Skotsko
Slovenská socialistická republika
Slovensko
Slovinsko
Slunce
Socialismus
Socialismus s lidskou tváří
Socialistická federativní republika Jugoslávie
Sokol (spolek)
Soubor:Пейзаж на Венере.jpg
Soubor:(Srpen68)Bilak & Husak.jpg
Soubor:(Srpen68)Zraneny vojak FF.jpg
Soubor:(Zari68)Alexander Dubcek B.jpg
Soubor:10 Soviet Invasion of Czechoslovakia - Flickr - The Central Intelligence Agency.jpg
Soubor:1968-Prague Spring ogv B.png
Soubor:1968-Prague Spring ogv I.png
Soubor:1968-Prague Spring ogv J.png
Soubor:3d10 fm de vilafranca.jpg
Soubor:Bundesarchiv Bild 146-1985-074-27, Hilfskreuzer Kormoran.jpg
Soubor:Bundesarchiv Bild 183-F0417-0001-011, Berlin, VII. SED-Parteitag, Eröffnung.jpg
Soubor:Bundesarchiv Bild 183-H0603-0036-001, Moskau, Ulbricht und Breshnew.jpg
Soubor:CHAROUSKOVÁ Marie (Klárov 26. 8. 1968).jpg
Soubor:Coat of arms of the Czech Republic.svg
Soubor:Czechoslovakia cs.png
Soubor:Czechoslovakia demo.png
Soubor:Dugesia Turbellaria wm (12) anterior.jpg
Soubor:Een vluchtelingenkamp voor Tsjechen bij de Wiener Reichsbrücke (Oostenrijk), Bestanddeelnr 921-6236 (cropped).jpg
Soubor:Flag of Hungary.svg
Soubor:Flag of Poland (1927–1980).svg
Soubor:Flag of the KSC.svg
Soubor:František Dostál Srpen 1968 3.jpg
Soubor:František Dostál Srpen 1968 4.jpg
Soubor:Hanging Bridge from Opposite Side Morbi - panoramio.jpg
Soubor:Helsinki demonstration against the invasion of Czechoslovakia in 1968.jpg
Soubor:Hudba Praha, Ladronka, kytarista.jpg
Soubor:IICCR G539 Ceausescu Dubcek Svoboda.jpg
Soubor:Jan Bula B.jpg
Soubor:Lidove milice logo.svg
Soubor:Macaca nigra self-portrait large.jpg
Soubor:Okupace Svobodný-vysílač.JPG
Soubor:Památník obětí komunismu - Teplice(detail).jpg
Soubor:Patocka 1971.jpg
Soubor:Posta Romana - 1959 - Laika 120 B.jpg
Soubor:Praga 11.jpg
Soubor:Sagitta constellation map.png
Soubor:Tango Porteño.jpg
Soubor:Transparent na Morovém sloupě na náměstí Svobody v Brně, srpen 1968.jpg
Soubor:Vítejte v EU.jpg
Soubor:Vyjezdni dolozka 1967.jpg
Soubor:Warsaw Pact Logo.svg
Soubor:Wiki letter w.svg
Soubor:Za vashu i nashu svobodu.jpg
Souborný katalog České republiky
Souhvězdí
Souhvězdí Šípu
Soul
Sovětský svaz
SpaceX
SpaceX Crew-3
Speciální:Kategorie
Speciální:Nové stránky
Speciální:Statistika
Spojené království
Spojené státy americké
SPOLU
Spotřební daň
Spotřební průmysl
Sputnik 2
Státní bezpečnost
Státní souhlas k výkonu duchovenské činnosti
Státní zastupitelství
Stávka
Střední skupina vojsk
Středočeský kraj
Středoslovenský kraj
Střevo
Stalinův pomník
Stalinismus
Starý pecky (a tak dál...)
Starší doba železná na území Česka
Strašnické krematorium
Stromboli (hudební skupina)
Studená válka
Superskupina (hudba)
Synkopy 61
Tábor nucené práce
Těžký průmysl
Třebíč
Třetí Československá republika
Třicetiletá válka
Tři králové (protinacistický odboj)
Tři sestry (hudební skupina)
T-55
Taťjana Bajevová
Takeoff (rapper)
Tasemnice
Tavenina
Teplice
Teror
Tesla (podnik)
Tetřívek douglaskový
Textař
The Plastic People of the Universe
Tigrajská lidově osvobozenecká fronta
Todor Živkov
Tomáš Špidlík
Tomáš Hajíček
Tomáš Halík
Tržní ekonomika
Tragédie při hromadné tlačenici v Soulu 2022
Traktor (píseň)
Transportní letoun
Twitter
U2
Ukrajinská sovětská socialistická republika
Uliční výbor
Uzavření českých vysokých škol 17. listopadu 1939
Václavské náměstí
Václav Havel
Václav Klaus
Válka v Tigraji
Vídeň
Vít Malinovský
Výšková migrace
Východní blok
Východočeský kraj
Východoslovenský kraj
Vývoz
Věznice
Vakcína proti covidu-19
Varšavská smlouva
Varšavská univerzita
Vasil Biľak
Vedoucí úloha strany
Velká recese
Velkomoravská říše
Vietnamská demokratická republika
Vinohradská
Vinohrady (Praha)
Virtual International Authority File
Visací zámek (hudební skupina)
Vláda České republiky
Vláda Petra Fialy
Vláda Rishiho Sunaka
Vladimír Špidla
Vladimír Guma Kulhánek
Vladimír Mišík
Vladimír Padrůněk
Vladimír Remek
Vladimír Zatloukal
Vlado Čech
Vodní elektrárna
Volby
Volby prezidenta USA 1992
Volodymyr Zelenskyj
Vražda
Vratislav Janda
Vstup České republiky do Evropské unie
Vstup Bulharska do Evropské unie
Vstup Chorvatska do Evropské unie
Vstup Estonska do Evropské unie
Vstup Kypru do Evropské unie
Vstup Litvy do Evropské unie
Vstup Lotyšska do Evropské unie
Vstup Maďarska do Evropské unie
Vstup Malty do Evropské unie
Vstup Polska do Evropské unie
Vstup Rakouska do Evropské unie
Vstup Rumunska do Evropské unie
Vstup Slovenska do Evropské unie
Vstup Slovinska do Evropské unie
Vydírání
Vykonstruovaný proces
Vylučovací soustava
Vysídlení Němců z Československa
Vznik Československa
Władysław Gomułka
Walter Ulbricht
West End
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2021
Wikipedie:Článek týdne/2022
Wikipedie:Autorské právo#Publikování cizích autorských děl
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2021
Wikipedie:Obrázek týdne/2022
Wikipedie:Ověřitelnost
Wikipedie:Přesměrování
Wikipedie:Pahýl
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/listopad
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2021
Wikipedie:Zajímavosti/2022
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Wilbur Smith
Wilsdruff
WorldCat
XIV. sjezd KSČ
XX. sjezd KSSS
Základní vojenská služba
Zákon na ochranu lidově demokratické republiky
Zákon o protiprávnosti komunistického režimu a o odporu proti němu
Zánik Československa
Západní Německo
Západočeský kraj
Zaměstnanost
Zatmění Slunce 25. října 2022
Zavedení eura v Česku
Zavedení eura v Česku#Veřejné mínění
Zdeněk Juračka (hudebník)
Zdeněk Mlynář
Země
Zeměpisné souřadnice
Země Koruny české
Zimmerwaldská konference
Znárodnění
Zpěv
Zuzana Burianová
Zvací dopis




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk