Protilátka - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Protilátka

Protilátka (iné názvy: antilátka, imunoglobulín; skratky: Ig, Ab, z angl. antibody) je veľký proteín tvaru Y produkovaný efektorovými B-lymfocytmi ako humorálna súčasť imunitného systému. Ich funkciou je identifikácia, opsonizácia (označenie) a neutralizácia cudzích elementov v tele (vírusy, baktérie, transplantáty) a aktivácia komplementu.[1]

Štruktúra protilátok

Protilátky sú tvorené dvoma ťažkými (H) a dvoma ľahkými (L) reťazcami, ktoré sú navzájom spojené disulfidickou väzbou [pozn 1]. Zatiaľ čo ťažké reťazce sú tvorené štyrmi až piatimi doménami a ich molekulová hmotnosť je v rozmedzí 50 – 75 kDa, ľahké reťazce sú tvorené vždy dvoma doménami a ich približná molekulová hmotnosť je 25 kDa. Domény na N-konci všetkých reťazcov sú tzv. variabilné (označované VH a VL) a ich štruktúra je iná pre každý klon B-lymfocytov. Ostatné domény sú tzv. konštantné (CL a CH1 – 4, číslované od N-konca), sú teda rovnaké pre protilátky toho istého typu. Variabilné domény tvoria tzv. idiotop, čo je časť protilátky, ktorá dokáže rozoznať určitú konkrétnu časť antigénu (tzv. epitop).

Proteolyticky je možné molekulu imunoglobulínu rozštiepiť na definované fragmenty: pôsobením papaínu vznikajú dva rovnaké fragmenty Fab (každý s jedným ľahkým a ťažkým reťazcom) a fragment Fc. Na fragment Fc sa viažu svojimi Fc receptormi fagocyty, NK bunky a iné bunky imunitného systému.[1] Podľa typu ťažkého reťazca, ktorý tvorí inmunoglobulín ich rozdeľujeme na 5 základných typov – nazývaných izotypy: IgA, IgD, IgG, IgE, IgM. Typ ich ťažkého reťazca, najmä štruktúrna väzba kryštalizujúceho fragmentu, ktorým sa viažu na bunkové receptory, ovplyvňuje ich interakciu s bielymi krvinkami aj proteínmi – ako je systém komplementu. Protilátky, ktoré vytvára jedna plazmatická bunka sa môžu líšiť typom ťažkého reťazca, aj ich môže byť viac typov, všetky sú ale zamerané na ten istý antigén-majú rovnakú variabilnú oblasť. Aby sa organizmus dokázal brániť veľa rôznym antigénom, musí aj tvoriť veľké množstvo protilátok, rádovo milióny. Ak by variabilné oblasti protilátok boli presne kódované génmi, ich počet by bol obrovský, nestačil by ani celý ľudský – súčasný genóm! Preto B-lymfocyt používa smerovanú evolúciu na vygenerovanie potrebných oblastí ľahkých i ťažkých reťazcov. Za tento objav dostal Susumu Tonegava v 1987 Nobelovu cenu v lekárstve.

Funkcia

Protilátky sa svoju variabilnou časťou viažu na antigén a zabraňujú tak patogénu vstupovať do buniek organizmu a poškodzovať ich (tzv. neutralizácia). Po naviazaní na antigén tiež môžu aktivovať komplement a opsonizáciou aktivovať deštrukčné mechanizmy efektorových buniek, predovšetkým fagocytov.[1]

Aktivácia komplementu

Bližšie informácie v hlavnom článku: Komplement (imunita)

Po naviazaní protilátky na patogén sa zmení jej konformácia tak, že na Fc časti odkryje väzbové miesto pre zložku komplementu C1, ktorá následne spúšťa kaskádu reakcií vedúcu ku chemotaxii ostatných zložiek imunitného systému, ďalšej opsonizácii patogénu a prípadne ku osmotickej lýze cieľovej bunky.[1]

Opsonizácia

Bližšie informácie v hlavnom článku: Opsonizácia

Väzbou na mikroorganizmy a antigénne častice protilátky zlepšujú alebo umožňujú reakciu ďalších efektorových buniek, ktoré sa svojimi Fc receptormi viažu na Fc časti protilátok na povrchu patogénu. Fc receptory sa nachádzajú predovšetkým na povrchu fagocytov, ale aj na povrchu NK buniek (CD16), bazofilov a mastocytov.[1]

Izotypy

Génové úseky, ktoré kódujú rôzne časti izotypov ťažkých reťazcov, sú za sebou usporiadané tandemovo (u človeka na 14. chromozóme). Ťažké reťazce, ktoré tieto úseky kódujú, sa nazývajú μ, δ, γ, α a ε, pričom u človeka existujú 4 významne odlišné subtypy γ14 a 2 významne odlišné subtypy α12. Imunoglobulíny tvorené týmito izotypmi ťažkých reťazcov sa nazývajú IgM, IgD, IgG1-4, IgA1-2 a IgE. V jednej molekule imunoglobulínu sú vždy totožné ľahké a ťažké reťazce.[1]

IgM

Protilátka IgM sa môže nachádzať na povrchu B-lymfocytu v monomérnej forme a tvoriť tak jeho receptor (BCR). Sekretovaný IgM existuje vo forme pentamérov, v ktorých sú jednotlivé monoméry spojené do kruhu cystínovými mostíkmi – molekula IgM má teda 10 väzbových miest pre antigén. IgM je prvým typom protilátky, ktorý sa vytvorí po stretnutí s antigénom. Tiež dobre viaže komplementový proteín C1 a aktivuje tak klasickú dráhu komplementu.[1]

IgD

IgD sa v monomérnej forme tiež nachádza na povrchu B-lymfocytov ako ich receptor ešte pred ich stretnutí s antigénom. Aktivuje bazofily a mastocyty, ktoré následne produkujú antimikrobiálne faktory.[1]

IgG

IgG je hlavný sérový izotyp (hlavne IgG1) a jeho jednotlivé subtypy sa odlišujú schopnosťou viazať komplementový proteín C1. Väčšinou sa dobre viažu na Fc receptory fagocytov a na tzv. proteín A, ktorý sa nachádza na povrchu niektorých kmeňov stafylokokov.[1]

IgA

IgA sa vyskytuje v slizničnej a v sérovej forme. Slizičný IgA sa skladá z dvoch monomérov spojených tzv. J reťazcom a zo sekrečnej komponenty. Ich veľké množstvo na povrchu slizníc tvorí významnú časť ochrany pred mikroorganizmami. Sérový IgA neaktivuje komplement, ale viaže svojou Fc časťou špecifické Fcα receptory na fagocytoch.[1]

IgE

IgE sa vyskytuje v zdravých jedincoch len v malých koncentráciách a uplatňuje sa predovšetkým pri obranných reakciách proti mnohobunkovým parazitom na slizniciach. Je hlavnou príčinou alergických reakcií. Vysokoafinitné receptory pre IgE sa nachádzajú na povrchu mastocytov a bazofilov.[1]

Protilátková diverzita

Na to, aby protilátky boli schopné rozpoznať ľubovoľného patogéna, je potrebný ich široký repertoár s rôznymi variabilnými časťami. Bolo preukázané, že ľudia produkujú okolo 10 miliónov rôznych protilátok – počet konkrétnych protilátok u jedinca je odlišný v závislosti od jeho génovej variability.[1]

Usporiadanie génov imunoglobulínových reťazcov

Gény kódujúce reťazce imunoglobulínov sú zložené z veľkého počtu niekoľkých druhov úsekov (tzv. génových segmentov). Gény pre ľudské H-reťazce sú usporiadané v génovom komplexe na 14. chromozóme. Tento komplex obsahuje (od 5' konca) niekoľko stoviek sekvenčne podobných úsekov V (variabilita), ďalej skupinu asi 50 krátkych úsekov D (diverzita) a skupinu deviatich krátkych úsekov J (z angl. joining). Ďalej sú tandemovo usporiadané úseky C (constant) – gény kódujúce konštantnú časť H-reťazca. Na koncoch jednotlivých V, D a J úsekov sú sekvencie, ktoré sú rozoznávané enzýmami zodpovednými za splicing, po stranách úsekov C sú tzv. prešmykové (switch) sekvencie, ktoré sú rozoznávané enzýmami zodpovedými za tzv. izotypový prešmyk. Gény ľudských L-reťazcov sú usporiadané podobne, nemajú však úseky D a majú menší počet úsekov V a J.[1]

Proces rekombinácie

Pri diferenciácii B-lymfocytov dochádza v ich progenitoroch (pro-B-lymfocyt) najprv ku vyštiepeniu časti génu medzi náhodne vybraným D a J segmentom (D-J preskupenie). Toto preskupenie môže prebiehať opakovane a prebieha paralelne na oboch chromozómoch. Ďalej nasleduje vyštiepenie náhodnej časti génu medzi V a D segmentom (V-D preskupenie). Ak je výsledok preskupenia na jednom chromozóme produktívny, čiže ak prepisom vzniknutá mediátorová RNA (mRNA) dáva vznik kompletnému peptidu, je proces preskupovania na druhom chromozóme zastavený. Tento proces sa nazýva alelická exklúzia. Primárny transkript tohto génu je alternatívnym splicingom upravený tak, že sú vyštiepené zvyšné úseky J a vzniká tažký reťazec (IgH) s konštantou časťou korešpondujúcou imunoglobulínu typu M alebo typu D. V tejto fáze sa bunka nazýva pre-B-lymfocyt. IgH asociuje s náhradnými L-reťazcami a vystavuje sa na povrchu bunky podobne ako BCR.[1]

Gény pre L-reťazec kódujú dva jeho typy označujú ako reťazce κ a λ. Najprv prebieha V-J preskupenie na génoch pre κ reťazec oboch chromozómov, až kým produkt jedného z nich nie je schopný asociovať s už vytvoreným IgH. Ak je preskupenie na jednom chromozóme úspešné, na druhom chromozóme sa zastaví. Ak nie je úspešné na ani jednom, iniciuje sa preskupovanie na génoch pre λ reťazec. Ak nie je ani to úspešné, bunka hynie. Po úspešnom preskupovaní bunka produkuje povrvchový IgM a stáva sa tak nezrelým B-lymfocytom. V ďalšom štádiu sú produkované alternatívnym splicingom súčasne IgM a IgD a bunka sa stáva zrelým B-lymfocytom.[1]

Variabilita imunoglobulínov je teda daná rôznymi kombináciami V, D a J úsekov. Tieto úseky navyše nie sú spájané presne definovaným spôsobom, čiže na rovnakých miestach. Okrem toho môžu byť odstrihnuté konce V, D a J segmentov predĺžené o náhodné tzv. N-sekvencie pôsobením enzýmu terminálna transferáza, čo ešte viac zvyšuje variabilitu imunoglobulínov.[1]

Tieto protilátky sa vyznačujú pomerne nízkou afinitou k antigénu a sprostredkujú tzv. protilátkovú reakciu vyvolanú antigénmi nezávislými od T-lymfocytov.[1]

Afinitná maturácia

Afinita protilátok voči antigénom môže byť niekoľkonásobne zvýšená za asistencie pomocných T-lymfocytov (Th lymfocytov) a folikulárnych dendritických buniek (FDC) v primárnych lymfoidných folikuloch. FDC a špecializovaná línia makrofágov vystavujú na svojich Fc receptoroch a komplementových receptoroch opsonizované antigény, ktoré rozoznávajú zrelé B-lymfocyty svojimi BCR receptormi, zatiaľ čo ich MHC glykoproteíny II s vystavenými peptidmi z pohltených patogénov môžu byť rozoznané TCR receptorom Th lymfocytov. Takto stimulované B-lymfocyty vstupujú do germinálnej reakcie, počas ktorej dochádza k ich deleniu a k opätovnému preskupovaniu V, D a J segmentov. Pod selekčným tlakom hynie väčšina B-lymfocytov a prežijú iba tie, ktorých imunoglobulíny majú zvýšenú afinitu. Výsledkom germinálnej reakcie je tzv. afinitná maturácia vznikajúcich protilátok, keďže ich afinita ku antigénom je o 4 – 6 rádov vyššia. B-lymfocyty, ktoré prešli afinitnou maturáciou, sa nazývajú plazmatické bunky [1].Zlepšenie rozoznávania nepriateľských látok T-lymfocytami je názorným príkladom mikroevolúcie. Po prvom úspešnom zachytení cudzej látky sa kontaktné segmenty na jeho ľahkých a aj ťažkých reťazcoch zmutujú a to niekoľkonásobne a následne sa vyskúša“ ich schopnosť detegovať cudziu látku. Používajú sa potom tie, ktoré boli najúčinnejšie. Takýmto spôsobom sa výrazne zlepší ich rozpoznávaia schopnosť na akonkrétneho „nepriateľa“. Táto „smerovaná mikroevolúcia“ prináša úsporu miesta v DNA bunky a zároveň vylepší obranu organizmu. Tento jav sa nazýva aj somatická hypermutácia. Pre organizmy prináša zlepšenie rozpoznávacej schopnosti protilátok na príslušný antigén. Prebieha naprogramovaný proces mutácií hypervariabilných oblastí genetickej základne antigénu. Netýka sa však buniek pohlavných – na potomstvo nie je prenášané. Po rozpoznaní antigénu sa B-lymfocyt začne masívne množiť. Pritom sa gény, čo vytvárajú receptory zmenia – mutujú stotisíc až miliónkrát častejšie než bežne! Najviac sa zamieňajú nukleotidy iným typom – tým sa menia gény, iné spôsoby – vloženie alebo mazanie nukleotidov sa robí len vzácne. Zo vzniknutých ntigénov sa potom selekčným mechanizmom vyberajú tie, ktoré najlepšie rozpoznávajú antigén. Toto rozpoznávanie sa už mierne líši pre antigény, lebo aj receptory sú málo odlišné. Postupným mutovaním a selekciou najlepších receptorov antigénov sa ich rozpoznávacia schopnosť už potom zlepší až rádovo! Táto najúčinnejšia B-bunka potom zostane a sa masívne a rýchlo rozmnoží, aby jej protilátky sa využili pri obrane voči antigénu. Zároveň sa „uloží do pamäte“, aby pre budúcu infekciu bola už pripravená. Pri somatickej hypermutácii zároveň protilátky sú upravené, aby neútočili na bunky vlastného tela, aby neprišlo zároveň na vznik autoimunitného ochorenia-zápalu, ale nevieme momentálne princíp tejto úpravy.[2][3]

Izotypový prešmyk

Pri germinálnej reakcii dochádza navyše k izotypovému prešmyku, čiže k zámene konštantnej časti produkovaných imunoglobulínov. To, aké izotypy vznikajú, je dané pôsobením cytokínov (IL-4, TGF-ß, IL-10, IFN-γ a iné).[1]

Imunitné reakcie založené na protilátkach

Tento druh imunitných reakcií je založený na rozpoznaní antigénu povrchovým antigénne špecifickým receptorom B-lymfocytov (BCR). Takto stimulované B-lymfocyty sa môžu pomnožiť a diferencovať na plazmatické bunky sekretujúce veľké množstvo protilátok. Väčšina antigénov je schopná vyvolať protilátkovú odpoveď založenú len na spolupráci B-lymfocytov s Th-lymfocytmi, niektoré (hlavne polysacharidy) sú však od T-lymfocytov nezávislé.[1]

Konštitutívne protilátky

Niektoré protilátky sú niektorými B-lymfocytmi produkované spontánne a konštitutívne. Tieto protilátky tvoria s antigénmi imunokomplexy a zohrávajú rolu v primárnej fáze protilátkovej reakcie (pozri nižšie).[1]

Reakcia vyvolaná antigénmi nezávislými na T-lymfocytoch

Táto reakcia závisí hlavne na tvorbe nízkoafinitných protilátok triedy IgM. Je vyvolaná rozpoznaním typických povrchových štruktúr patogénov (lipopolysacharid, flagelin, polysacharidy tvoriace puzdrá a bunkovú stenu baktérií, polyproteíny tvoriace obálku vírusov) receptormi B-lymfocytov (hlavne tzv. TLR, z angl. toll-like receptor). Nezávislosť od T-lymfocytov však nie je úplná – B-lymfocyty potrebujú pre aktiváciu niektoré cytokíny (IL-2, IL-3, IFN-γ), ktoré sú produkované aj T-lymfocytmi.[1]

Reakcia vyvolaná antigénmi závislými na T-lymfocytoch

B-lymfocyt môže po rozoznaní antigénu daný patogén pohltiť a jeho peptidické štepy vystaviť na MHC gp II. Tie môžu byť rozoznané receptormi Th-lymfocytov (TCR), ktoré boli stimulované MHC gp II antigén prezentujúcich buniek, ktoré predtým pohltili rovnakého patogéna. Ide teda o špecifickú aktiváciu B-lymfocytov, pre ktorú je potrebná súhra antigén prezentujúcich buniek, Th-lymfocytov a B-lymfocytov. V prípade, že bol B-lymfocyt stimulovaný patogénom ako cez BCR, tak aj cez iný receptor (napr. TLR), je možná jeho aktivácia v rámci tzv. minimálneho modelu, v ktorom antigén prezentujúce bunky nie sú potrebné. Reakcia vyvolaná antigénmi závislými na T-lymfocytoch prebieha vo dvoch fázach.[1]

Primárna fáza protilátkovej reakcie

V tejto fáze vytvárajú prirodzené protilátky imunokomplexy, ktoré sú spolu s opsonizovanými antigénmi transportované lymfou (v prípade sleziny krvou) do sekundárnych lymfatických orgánov. Tieto antigény a imunokomplexy sú zachytávané špecializovanou populáciou makrofágov a folikulárnych dendritických buniek (FDC), na ktorých povrchu sú uchovávané v natívnom stave. Rovnaké antigény sú zároveň do sekundárnych lymfatických orgánov prenesené dendritickými bunkami, ktoré ich rozštiepené na peptidy prezentujú na svojich MHC gp II T-lymfocytom. Tak dochádza v tzv. T-bunkovej zóne ku stimulácii Th-lymfocytov.[pozn 2] Rozpoznanie antigénu na povrchu FDC B-lymfocytmi spôsobí putovanie B-lymfocytov ku Th-lymfocytom, kde dochádza k proliferácii B-lymfocytov, a ich diferenciáciu na plasmatické bunky. Časť B-lymfocytov sa premieňa na tzv. pamäťové bunky a ďalšia časť vstupuje do sekundárnej fázy protilátkovej reakcie.[1]

Sekundárna fáza protilátkovej reakcie

V tejto fáze B-lymfocyty nie sú diferencované na plazmatické bunky, ale vracajú sa naspäť do lymfoidného folikulu, kde prebieha germinálna reakcia. B-lymfocyty sú na jej konci diferencované na plazmatické bunky s rádovo vyššou afinitou voči antigénu.[1]

Monoklonálne protilátky

Protilátková odpoveď aj proti jednoduchým antigénom je skoro vždy polyklonálna, čiže výsledkom je množstvo individuálne odlišných molekúl imunoglobulínov. Monoklonálne protilátky sú produktom jedného klonu plazmatických buniek, sú špecifické pre totožný epitop a sú rovnakého izotypu. Môžu prevládať v prípade nádoru plazmatických buniek (tzv. plazmocytom).[1]

Príprava monoklonálnych protilátok

Monoklonálne protilátky je možné pripraviť in vitro, problémom je však krátka doba života B-lymfocytov. Tento problém sa rieši fúziou B-lymfocytu s vhodnou myelómovou bunkovou líniou, čím vzniká tzv. hybridóm. Monoklonálne protilátky majú veľké využitie ako pre diagnostické a lekárske účely, tak pre výskum.[1]

Monoklonálne protilátky vo výskume

Monoklonálne protilátky sú hojne využívané predovšetkým v oblasti biochémie a molekulárnej biológie. Sú na nich založené techniky izolácie proteínov (afinitná chromatografia, imunoprecipitácia) a ich detekcie (western blot, enzýmová imunosorbentová analýza, imunofluorescenčné metódy).[4] Reakcia protilátky a antigénu je základ praktick všetkých sérologických metód v ľudskej aj veterinárnej medicíne. Metódy sa líšia najme vizualizáciou antigénu viažúceho protilátky. Toto nám prináša spôsob na určenie veľa infekčných aj autoimunitných postihnutí či onemocnení.

Princípy zvýraznenia väzby vytváranej obrannými látkami z B-lymfocytov:

  • precipitácia – imunodifúzia, protismerná imunoelektroforéza
  • aglutinácia – Coobmbsov test, pasívna hemaglutinácia, inhibícia hemaglutinácie
  • väzba komplemetu – fixačnej reakcie
  • enzýmové reakcie – ELISA test
  • neutrlaizácia vírusu – Vírus neutralizačný test
  • radiačné metódy – RIA, RAST, rádoimunoprecipitácia

Monoklonálne protilátky v medicíneupraviť | upraviť zdroj

Monoklonálne protilátky sa môžu používať ako liek proti jedom (typicky uštipnutie hada). Najnovším využitím sú rekombinantné proteíny, ktoré zvyšujú afinitu imunitných buniek k ich cieľovým bunkám a zvyšujú tak ich efektivitu, napr. s cieľom liečiť rakovinu.[5]

Počiatky imunityupraviť | upraviť zdroj

Mechanizmus zmeny izotypu v blymfocytoch

Samotný imunitný systém je podstatnou časťou organizmu. To ako vznikol nám môže umožniť lepšie ho pochopiť alebo aj zlepšiť. Táto otázka, stále, však zostáva v rovine skúmania aj sporov. Hoci boli navrhnuté viaceré scenáre jeho evolučného vývoja, neboli zatiaľ všeobecne prijaté, sú príliš povrchné. Vážnym impulzov pre súčasný výskum najmä v posledných rokoch, to boli zástancovia hnutia inteligentného dizajnu, ktorý ho označujú za prípad mechanizmu tzv. nezjednodušiteľnej zložitosti a preto tvrdia, že nie je možné, aby bol vytvorený nikým neriadenými, čisto materialistickými evolučnými procesmi. Má niekoľko častí, ktoré navzájom závisia a vytvárajú jeho obrannú funkciu, ale samostatne! takúto funkciu nemajú – receptory, väzba von na B-bunku, B-bunka, naprogramovaný proces hypermutácií a selektovania – riadená mikroevolúcia, pamätanie použitých protilátok. Navyše sú vzájomne zosúladené, aby spolupracovali. Vysvetlenia prevzaté na zverejnenie v literatúre, registroch sú nepresné a povrchné. Zvyčajne len popisujú kľúčové časti a hoci správne zdôrazňujú ich vzájomnú prepojenosť, nevysvetľujú jej vznik – len opisujú potrebnosť jej „objavenia sa“ v správnom čase a na správnom mieste pre fungovanie celého systému imunity. Experimenty, ktoré by nám prezentovali vývoj imunity alebo overovanie navrhnutých scenárov sú prakticky iba maličké krôčky (časti) procesov, ale nie realistické a vystavené plne náročnosti vzniku v reálnych podmienkach prírody. Otázka zostáva stále otvorená a snaha o vylepšenie našej imunity, môže nám umožniť pochopiť aj jej počiatky.[6][7]

Pozri ajupraviť | upraviť zdroj

Poznámkyupraviť | upraviť zdroj

  1. Imunoglobulíny tiav nemajú ľahké reťazce
  2. Podľa najnovších výskumov ide o podtriedu tzv. Tfh-lymfocytov, proces aktivácie B-lymfocytov však ešte nie je dostatočne preskúmaný.

Referencieupraviť | upraviť zdroj

  1. a b c d e f g h i j k l m n o p q r s t u v w x y z aa HOŘEJŠÍ, Václav a kol. Základy imunologie. 5. vyd. Praha : TRITON, 2013. ISBN 978-80-7387-713-2. (česky)
  2. Oprea, M. (1999) Antibody Repertoires and Pathogen Recognition: The Role of Germline Diversity and Somatic Hypermutation (Thesis) University of Leeds. http://www.santafe.edu/~mihaela/thesis/version_short.html
  3. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.J. (2005). Immunobiology (6th ed.). Garland Science. ISBN 0-8153-4101-6.
  4. Lehninger Principles of Biochemistry. 6. vyd. Boston : W. H. Freeman, 2013. ISBN 978071677108 Chybné ISBN. (anglicky)
  5. VON STRANDMANN, E. P. et al.. Natural ligands and antibody-based fusion proteins: harnessing the immune system against cancer. Trends in molecular medicine, 2013, s. 72 – 82. DOI10.1016/j.molmed.2013.10.006. (anglicky)
  6. Gunasekaran K (2010). "Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG". The Journal of Biological Chemistry. 285 (25): 19637–19646. doi:10.1074/jbc.M110.117382. PMC 2885242. PMID 20400508https://pubmed.ncbi.nlm.nih.gov/20400508
  7. Behe, M.: Darwinova černá skříňka. Návrat domů, Praha. 2001.
Zdroj:
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Zdroj: Wikipedia.org - čítajte viac o Protilátka

Ízeltlábúak
Úmrtí v roce 2022
Ústavná listina Československej republiky
Čína
Časová osa ruské invaze na Ukrajinu (2022)
Čechy
Čelist
Česi
Česká družina
Česká Wikipedie
České Budějovice
Česko
Česko-slovenská armáda
Česko-slovenské légie
Česko-Slovensko
Československá národná rada
Článkonožce
Článkování
Člankonošci
Členonožci
Členovci
Říše (biologie)
Šablona:Cite web
Šestinozí
Škrkavka
Špeciálne:KnižnéZdroje/0713997087
Špeciálne:KnižnéZdroje/80-7153-174-X
Špeciálne:KnižnéZdroje/80-7185-175-2
Špeciálne:KnižnéZdroje/8072059017
Špeciálne:KnižnéZdroje/978-80-7243-597-5
Špeciálne:KnižnéZdroje/978-80-7277-572-9
Špeciálne:KnižnéZdroje/978-80-7429-133-3
Špeciálne:KnižnéZdroje/9788072153930
Špeciálne:KnižnéZdroje/9788087173473
Štíři
Štírci
Štetín
Štrnásť bodov prezidenta Wilsona
Švédsko
Švajčiarsko
Žábronožky
Žábry
Žáby
Žíla (biologie)
Žaberní oblouk
Žahavci
Želvušky
Ženeva
Živina
Živočichové
Životopis
Žlázy s vnitřní sekrecí
Αρθρόποδα
Бандпойҳо
Бирæкъахджынтæ
Буынаяқтылар
Буынтыкаяклылар
Быуынтығаяҡлылар
Зглавкари
Муунак буттуу
Суставаногія
Членестоноги
Членистоногие
Членистоногі
Членкаре
Членконоги
Членістаногія
Үетэ хүлтэн
Үет хөлтөн
Հոդվածոտանիներ
פרוקי-רגליים
آرتھوپوڈا
آرٿروپاڊا
ارتھروپوڈ
بندلینگون
بندپایان
بند پښه لرونکې ژوې
بوغوم‌آیاق‌لیلار
جومگەپێیان
مفصليات الأرجل
مفصليات الارجل
مفصلی پایہ
अर्थोपोडा
सन्धिपाद
সন্ধিপদী
সন্ধিপদী প্ৰাণী
ਆਰਥਰੋਪੋਡ
સંધિપાદ
கணுக்காலி
ఆర్థ్రోపోడా
ಸಂಧಿಪದಿಗಳು
ആർത്രോപോഡ
สัตว์ขาปล้อง
ფეხსახსრიანები
ጋጥመ-ብዙ
節足動物
절지동물
10. august
11. december
12. říjen
13. říjen
15. říjen
1517
16. apríl
16. jún
1648
1892
1897
1914
1915
1917
1918
1919
1920
1922
1926
1935
1954
1967
20. říjen
20. máj
2022
22. říjen
23. říjen
25. říjen
27. marec
28. říjen
28. júl
28. jún
28. október
29. říjen
29. február
29. október
29. září
30. október
31. říjen
4. jún
4. máj
8. január
8. máj
95 tezí
Akvizice
Alois Rašín
Alsasko
Anatolij Papanov
Anatomie člověka
Angiografie
Anomalocaris
Antonín Švehla
Aortální oblouk
Aorta
Arithropodi
Arthropleura
Arthropod
Arthropoda
Arthropoden
Arthropodes
Arthropodo
Arthur Conan Doyle
Articulata
Artròpodes
Artrópode
Artrópodos
Artrapód
Artropod
Artropoda
Artropode
Artropodo
Artropodoj
Artropodu
Atwopòd
Australská národní knihovna
Autorita (knihovnictví)
Autoritní kontrola
Bělgorodská oblast
Belgicko
Benešov
Benito Mussolini
Bičnatci
Billy Joel
Biologická klasifikace
Bitka o Zvolen
Bitka pri Zborove (1917)
Boľševik
Bohoslužba
Boogie-woogie (hudba)
Branislav Hronec
Bratři Itálie (politická strana)
Bratislava
Bratranec
Buğumayaqlılar
Buněčné jádro
Cárske Rusko
Céva
Cévní systém
Carl Perkins
Castell
Chʼosh bijáád dahólónígíí
Chceme světlo!
Chitin
Chlopeň
Chlopeň (anatomie)
Chorváti
Chvostnatky
Chvostoskoci
Circulatory system?oldid=175738145
Clevelandská dohoda
Coelom
Commons:Featured pictures/cs
Country
Cytoplazma
Dýchací soustava
Daghagtiil
Dennis Quaid
Den vzniku samostatného československého státu
De facto
Dietrich Mateschitz
Difuze
Dočasná ústava
Dohoda (prvá svetová vojna)
Dolné Rakúsko
Dospělec
Drápkovci
Druhoústí
Druhy hlasů
Ductus arteriosus
Ductus venosus
Dutá žíla
Dvoustranně souměrní
Ecdysozoa
Edvard Beneš
Ekdyse#Hormonální řízení svlékání u hmyzu
Ekdyson
Eklem bacaklılar
Elektřina
Elektra Records
Elon Musk
Elton John
Elvis Presley
Embryo
Embryonální vývoj kardiovaskulární soustavy člověka
Encyklopedie
Endotel
Enzym
Epidermis
Epitelová tkáň
Eurypterida
Exoskelet
Federální služba bezpečnosti
File:Blutkreislauf Reptilien.svg
Foramen ovale
Francúzsko
Francis Frith
Francouzská národní knihovna
Fylogeneze
Ganglion
Gastrovaskulární dutina
Geleedpotigen
Geleedpotiges
Gelidpoetege
Gemeinsame Normdatei
Generální tajemník ústředního výboru Komunistické strany Číny
Giorgia Meloniová
Girêçikpê
Gliederfüßer
Gonochorismus
Gospel
Habsburgovci
Halloween
Hamburg
Hektár
Hemolymfa
Hermafrodit
Hlavní strana
Hlavní strana?uselang=cs
Hlavohruď
Hlavonožci
Hltan
Hmyz
Hmyzenky
Holandsko
Hormon
Horní Dvořiště
Hostitel
Hrotnatci
Hruď
Hudební žánr
Hudební nástroj
Hudební skladatel
Illinois Jacquet
Imunita (biologie)
Indické námořnictvo
Indie
Instar
Itálie
Játra
Jaderná triáda
Jaekelopterus
Jan Dus
Japonsko
Jazyčnatky
Jednorodí
Jerry Lee Lewis
Jerry Lee Lewis?oldid=1571708
Jiří Kraus
Jižní Korea
Johann Ludwig Christian Gravenhorst
Johnny Cash
Këmbënyjorët
Křídlatí
Kůže
Kambrium
Kapřivci
Karel III. Britský
Karel Kramář
Karol I. (Rakúsko-Uhorsko)
Karotida
Katalog jmen a názvů děl Katalánska
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Klad
Klanonožci
Klavír
Klepítkatci
Kmen (biologie)
Kořenohlavci
Košice
Kolej (ubytovací zařízení)
Komunistická strana Číny
Končetina
Konzervativní strana (Spojené království)
Korýši
Kostra člověka
Kráľovstvo Srbov, Chorvátov a Slovincov
Krátkochvosti
Krabovci
Krajiny českej koruny
Krev
Krokodýli
Kroužkovci
Krvinka
Kuba
Kukla
Kusadlovci
Kutikula
Kutikula#Kutikula bezobratlých
Kyjonožci
Kyslík
Lülijalgsed
Larva
Laspuateten
Lasturnatky
Leddjur
Leddyr
Ledvina
Leszek Engelking
LGBT
Liðadýr
Liðdýr
Libor Pešek
Library of Congress Control Number
Libri
Liddfööt
Linda Gail Lewis
Liz Trussová
Louisiana
Lužice
Lužickí Srbi
Lupenonožci
Lutherstadt Wittenberg
Lymfatická soustava
Měkkýši
Maďarská republika rád
Maďarsko
Maďarsko-česko-slovenská vojna
Maffie
Makadla
Malá dohoda
Malý krevní oběh
Manažer
Mandibulata
Martinská deklarácia
Martin Luther
Maxillopoda
MCA Records
Melldrosek
Memphis
Mercury Records
Mezenchym
Mezinárodní standardní identifikátor jména
Mezoderm
Michal Ambrož
Miilixinximna
Mikrofotografie
Milan Hodža
Milan Rastislav Štefánik
Miloš Zeman
Mimobuněčná tekutina
Mississippi (stát)
Mnohoštětinatci
Mnohonožky
Moč
Morava (región)
Most (mesto)
Motolice
Mozek
MusicBrainz
Mymba ipy apytimby
Myoblast
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národné zhromaždenie
Národní a univerzitní knihovna v Záhřebu
Národní knihovna České republiky
Národní knihovna Španělska
Národní knihovna Izraele
Národní knihovna Koreje
Národní parlamentní knihovna Japonska
Národný výbor československý
Nórsko
Nadace Wikimedia
Narioutakuojē
Nariuotakojai
Nashville
Nemecké Čechy
Nemecké cisárstvo (1871 – 1918)
Nemecké Rakúsko
Nemecko
Neodermata
Neodermis
Nepohlavní rozmnožování
Nerv
Nervová soustava
Niveljalkaiset
Nizozemská královská knihovna
Nohatky
Norodom Sihanuk
Nymfa
Nymfa (biologie)
Oběhová soustava
Oběhová soustava ptáků
Obojživelníci
Obratlovci
Ocasatí
Odboj během druhé světové války
Opabinia
Orava (región)
Orgánová soustava
Orientační běh
Oslo
Ostrorepi
Otmar Brancuzský
Pásnice (živočich)
Písek
Písničkář
Převodní srdeční systém
Paleozoikum
Panarthropoda
Pancrustacea
Paríž
Parafyletismus
Patogen
Pavouci
Pavoukovci
Pittsburská dohoda
Plíce
Plebiscit
Plicní žíla
Plicní kmen
Plicní oběh
Plicní tepna
Plicnice
Ploštěnci
Ploštěnky
Ploutev
Plyn
Podkarpatská Rus
Podklíčková tepna
Pohlavní rozmnožování
Pohybová soustava
Pokožka (živočichové)
Polarizace (elektrodynamika)
Polská národní knihovna
Polyfyletismus
Polytematický strukturovaný heslář
Pomník svätého Václava
Portál:Živočichové
Portál:Aktuality
Portál:Biologie
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Hudba
Portál:Kultura
Portál:Lidé
Portál:Medicína
Portál:Náboženství
Portál:Obsah
Portál:Příroda
Portál:Sport
Posmkāji
Pot
Pražský hrad
Praha
Prezident
Prezident Spojených štátov
Proměna (biologie)#proměna dokonalá
Proměna (biologie)#proměna nedokonalá
Protesty v Íránu (2022)
Protilátka
Protonefridie
Prvá česko-slovenská republika
Prvá svetová vojna
Prvoústí
Prvoci
Prvohory
Pseudocoel
Ptáci
Pulec
Pupečníková žíla
Pupečníková tepna
Q11068#identifiers
Q11068#identifiers|Editovat na Wikidatech
Q1360
Q202729
Q202729#identifiers
Q202729#identifiers|Editovat na Wikidatech
Rakúsko
Rakúsko-Uhorsko
Rakovci
RCA Records
Recentní organismus
Recepčný zákon (1918)
Reformace
Rhythm and blues
Rishi Sunak
Rock and roll
Rock and Roll Hall of Fame
Rolling Stone
Rozmnožovací soustava
Roztoči
Roztočovci
Ruka
Ruská invaze na Ukrajinu (2022)
Ruská ríša
Rusko
Rybenky
Ryby
Sèvreská zmluva
Síra
Saintgermainská zmluva (1919, veľká)
Sam Phillips
Savci
Schizocoel
Sedemdňová vojna
Sekáči
Sensu lato
Sesterská skupina
Seznam britských králů
Seznam osobností vyznamenaných 28. října 2022
Seznam premiérů Itálie
Seznam premiérů Spojeného království
Sherlock Holmes
Sillwichaki
Si Ťin-pching
Skalica (mesto)
SLBM
Sliezsko
Slováci
Slovenská ľudová republika
Slovenská republika rád
Slovensko
Slunce
SNAC
Socializmus
Solifugy
Soubor:Пейзаж на Венере.jpg
Soubor:3d10 fm de vilafranca.jpg
Soubor:Arterio main.JPG
Soubor:Arthropoda.jpg
Soubor:Blutkreislauf Amphibien.svg
Soubor:Blutkreislauf Fische.svg
Soubor:Blutkreislauf Reptilien.svg
Soubor:Commons-logo.svg
Soubor:Dédicace de Jerry Lee Lewis datant de 2007 (collection privée).jpg
Soubor:Dugesia Turbellaria wm (12) anterior.jpg
Soubor:Human circulatory system.svg
Soubor:Jerry Lee Lewis @ Credicard Hall 01 (cropped).jpg
Soubor:Martin Luther, 95 Thesen, 1517, Schlosskirche Wittenberg.jpg
Soubor:Oligochaeta anatomy.svg
Souborný katalog České republiky
Soul
Soustava žláz s vnitřní sekrecí
Speciální:Hledání
Speciální:Kategorie
Speciální:Moje diskuse
Speciální:Moje příspěvky
Speciální:Náhodná stránka
Speciální:Nové stránky
Speciální:Poslední změny
Speciální:Statistika
Spiš (región)
Spojené štáty
Spojené kráľovstvo
Spojené království
Spojené státy americké
Srbi
Srbsko
Srdce
Státní souhlas k výkonu duchovenské činnosti
Stĺp Panny Márie a Najsvätejšej Trojice
Střelba v Bělgorodské oblasti
Střelecký útok v Bratislavě 12. října 2022
Střevo
Staromestské námestie (Praha)
Stawonogi
Steroidy
Stonožkovci
Stonožky
Sudetsko
Sudety (región)
Sun Records
Suverenita (právo)
Sval
Svaly
Svijonožci
Svlékání#Svlékání u členovců
Tábor (Česko)
Třída Arihant
Tři králové (protinacistický odboj)
Tactopoda
Tagma (biologie)
Taliansko
Tasemnice
Tavenina
Taxonomická kategorie
Tešínsko
Tenor
Tepénka
Tepna
Tepna podklíčková
Termoregulace
Terst
Tetřívek douglaskový
Texas
Tiswermin
Tkáň
Tomáš Garrigue Masaryk
Trávicí soustava
Trávicí soustava člověka
Tragédie při hromadné tlačenici v Soulu 2022
Trianonská mierová zmluva
Trilobiti
Trove
Tunica intima
Tunica media
Turecko
Twitter
Tykadla
Užhorod
Uhličitan vápenatý
Univerzitní systém dokumentace
USA
Uzavření českých vysokých škol 17. listopadu 1939
Václavské námestie (Praha)
Véna
Výšková migrace
Vavro Šrobár
Veřejná bezpečnost
Veʻehokohoko
Velbloud
Venula
Versaillská zmluva (1919)
Veselí nad Lužnicí
Vidličnatky
Viktor Dvorčák
Virtual International Authority File
Vláda Rishiho Sunaka
Vlásečnice
Vlastizrada
Volodymyr Zelenskyj
Vylučovací soustava
Vysoká škola
Vzdušnice
Vzdušnicovci
Vznik Československa
Vznik Československa?oldid=13534122
Walk the Line
Wang Jang-ming
Washingtonská deklarácia
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2022
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Jak číst taxobox
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2022
Wikipedie:Ověřitelnost
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/říjen
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:WikiProjekt Překlad/Rady
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2022
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Woodrow Wilson
WorldCat
Zápal plic
Zadeček
Zatmění Slunce 25. října 2022
Zglavkari
Zimmerwaldská konference
Zločin z nenávisti
Zpěv
Zpěvák
Zuzana Čaputová
Zuzana Burianová




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk