Hromadná vymírání - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Hromadná vymírání
 ...
Grafické vyjádření míry vymírání druhů v průběhu dějin země od kambria po současnost; osa x: miliony let do minulosti, osa y: procenta vymřelých druhů

Hromadné vymírání (někdy také masové vymírání) je událost, během které dojde k vymření velkého počtu biologických druhů a dočasně rapidně klesne diversita životních forem na zemi. Jinými slovy, rychlost vymírání jednotlivých druhů v daném období výrazně převýší rychlost vzniku nových druhů. V průběhu dějin Země se jich odehrálo několik. Opakem hromadného vymírání je evoluční radiace, která obvykle po vymírání následuje. K evoluční radiaci ale může dojít i z jiných příčin, než je hromadné vymírání, a patrně přímo s vymíráním nesouvisí.[1]

Biosféra se neustále mění a evolučně vyvíjí a neustále se přizpůsobuje novým podmínkám (např. kontinentální drift pozměňuje podnebí, vzdušné a mořské proudy různých oblastí a vytváří nová ohniska vulkanické aktivity), což je vše přirozenou součástí druhové obměny (odchod/vymření některých druhů a příchod/vznik druhů nových). V některých případech jsou však změny natolik rozsáhlé či rychlé, že se na ně žijící druhy nedokáží přizpůsobit, až dojde ke zhroucení celého ekosystému a množství jednotlivých druhů začne vymírat, aniž by je zároveň nahrazovaly v jejich rolích druhy nové. V takovém případě hovoříme o hromadném vymírání.

Příčiny hromadných vymírání

Příčiny jsou jednou z nejdiskutovanějších otázek každého hromadného vymírání. Zatímco vymírání samotné je dobře zdokumentovatelné na základě fosilních nálezů (náhlý pokles biodiverzity anebo vymizení velkého množství druhů v geologicky krátkém období zpozorovatelné na paleontologických nalezištích z různých částí světa) příčina k takovéto události bývá jen obtížně odhalitelná. Většinou se předpokládá (a v několika případech proto hovoří i zjištěné fosilní záznamy), že došlo k rapidním změnám životních podmínek na území zasahující většinu planety.

Za původce takovýchto masivních změn vedoucích k vymírání je označována přírodní katastrofa, která naši planetu postihla. Častými podezřelými jsou asteroid (impaktní zima) nebo silný vulkanismus (sopečná zima), který je s vymíráním korelovaný.[2] Navíc korelace mezi kosmickými impakty a geologickou aktivitou naznačuje, že spouštěcím mechanismem silných erupcí mohly být velké impakty.[3] Několik teorií, objasňujících různá vymírání, obsahují i zmínku o kosmickém záření (exploze relativně blízké novy nebo silná sluneční erupce), ovšem nalézt pro takovéto události důkazní materiál je obtížné. Supernova by vyvařila oceány (které chrání život), pokud by explodovala blíže, než je nejbližší hvězda.[4] Těžko tak kosmické záření zcela zahubí život. Supernova však může ovlivnit složení fauny.[5] Podobná hypotéza se objevila na počátku 70. let. 20. století a bylo jí vysvětlováno vyhynutí dinosaurů na konci křídy. Dnes je však považována za vyvrácenou.[6] Ovšem existuje korelace mezi kosmickým zářením a zemským vulkanismem,[7] takže může způsobit vulkanismus,[8] který je za příčinu jistých vymírání uznáván. Původcem mohou být i biologické příčiny[9] či kritická změna úrovně stopových prvků.[10] I chemické složení impaktoru může mít vliv na míru vymírání a to například minerálními aerosoly ovlivňující klima dlouhodobě.[11] Dalšími faktory ovlivňující či spouštějící vymírání, které paleontologové dokázali analýzou dávných sedimentů z dob různých vymírání zjistit, je náhlá změna koncentrace kyslíku v atmosféře[12] či změna teploty (ať již ochlazení či oteplení) a míra této teplotní změny.[13]

Chicxulubský kráter

U několika hromadných vymírání se usuzuje i na možnost souhry vícero důvodů následných radikálních změn prostředí, které se nešťastnou náhodou setkaly v geologicky krátkém období, čímž byl dopad na biosféru o to tvrdší, než kdyby se ony katastrofy odehrály jednotlivě (teprve se zotavující ekosystémy po katastrofě jedné byly zasaženy katastrofou další).

Důvodem, proč je tak těžké nalézt příčinu těchto katastrofických událostí, je ten, že za uplynulé miliony let bylo epicentrum katastrofy vystaveno erozivním silám, které neustále přetvářejí povrch planety a zahlazují stopy.

V případě vymření dinosaurů (jehož příčiny zaměstnávaly mysl vědců již od 19. století),[14] panuje v současnosti přesvědčení, že příčinou byl dopad asteroidu, který před 66 miliony let vyhloubil 180 kilometrů široký Chicxulubský kráter (respektive byl jednou z hlavních příčin, ve shodné době byl také silně aktivní vulkanismus v oblasti dnešní Dekánské plošiny[15]). Kráter samotný byl odhalen díky náhodě; jeho větší část se nalézá na dně Mexického zálivu a jen část je na souši poloostrova Yucatán. A teprve v posledních letech bylo odhaleno, že kráter Boltyš na Ukrajině pochází taktéž z období konce druhohor, což znamená, že za vymřením dinosaurů možná stojí asteroidy dva, které dopadly na Zemi v rozmezí několika tisíců let. Impaktor Boltyš byl ale příliš malý a dopadl o několik tisíciletí dříve.[16] Přesto však ještě v osmdesátých a na počátku devadesátých let 20. století (tedy více než po 100 letech bádání a zkoumání příčin) byla teorie asteroidu, tehdy počítajíc "jen" s jedním asteroidem, většinou vědců odmítána a označována jako sci-fi.

Většina hromadných vymírání je ještě starší než toto populární vymírání, které zahubilo dinosaury. O to víc času měla eroze na zahlazení stop a o to obtížnější je v současnosti tyto stopy nalézt.

Periodicita vymírání

Již v roce 1977 přišli A. G. Fischer a M.A. Arthur s tvrzením, že období zrychleného vymírání se za posledních 250 milionů let periodicky opakovala po zhruba 32 milionech let. Výzkum ovšem prováděli na omezených fosilních datech a bez řádného statistického zpracování. Zpřesnění dodali v r. 1982 po dokončení databáze do té doby známých fosilních mořských organismů David M. Raup a J. John Sepkoski, kteří na souboru zhruba 3500 čeledí s kvalitnější statistikou zjistil cyklus 26 milionů let.[17] Už v r. 1985 se ale objevil protiargument, že i při náhodné distribuci by měla úroveň vymírání ze statistických důvodů vytvářet maxima v průměru každé 4 stratigrafické vrstvy, což je vzhledem k jejich průměrnému trvání právě 26 milionů let. Zjištěná opakování vymírání ale nebyla „v průměru“ po 26 milionech let, ale „právě“ po 26 milionech let. I tak se ale objevovaly další argumenty, proč může jít o statistický šum, stejně tak ale i další potvrzení, že cyklus existuje.

V r. 2012 výzkumníci tento cyklus (a spolu s ním i cyklus vymírání po 62 +/-3 milionech let objeveném v r. 2005[18]) ovšem potvrdili za použití renovované geologické časové stupnice (GTC 2012), na základě dvou nezávislých databází fosilních záznamů a podrobnější analýzou na úrovni druhů. Cyklus vymírání 27 milionů let byl prokázán dvěma statistickými testy v 2x delším časovém období než v původní studii z r. 1982 a s dvou a desetkrát větší statistickou významností (na hladinách 0,02 a 0,004).[19]

U periody dlouhé desítky milionů let si lze stěží představit, že by mohla mít biologické příčiny. Možné jsou geologické a pro výraznou pravidelnost cyklu hlavně extraterestriální příčiny.

Dlouho se spekulovalo o hypotéze Nemesis jako „hvězdě smrti“, souputníku Slunce, která má perihel své dráhy v Oortově oblaku a při jeho průletu vysílá směrem k nám komety.[20] Přehlídkami oblohy byly ale vyloučeny všechny hvězdné objekty, zůstala ovšem možnost podhvězdného objektu – hnědého trpaslíka o hmotnosti kolem 0,002 hmotnosti Slunce. I tato varianta a s ní i hypotéza Nemesis jako taková byla nakonec vyloučena vzhledem k příliš přesnému opakování vymírání po 27 milionech let s odchylkami jen 2–10% v průběhu celého období 470 milionů let, ve kterém je zatím zjištěna, což neodpovídá modelům Nemesis, u které se předpokládá prodlužování doby oběhu o 20% každých 250 milionů let v důsledku poruch způsobených gravitačním působením galaxie a ostatních hvězd. Jiná hypotéza dávala do souvislosti periodické přecházení sluneční soustavy rovinou galaxie, což by opět mohlo způsobit nestabilitu drah komet v Oortově oblaku a vychýlit je mimo jiné i směrem k Zemi. Cyklus opakování přechodů má ovšem větší periodu – při modelování, které bere v úvahu jen viditelnou hmotu, plných 45 milionů let, pokud se započítá vliv temné hmoty v halu Galaxie a mračen vodíku alespoň 33 milionů let a pro její snížení na 27 milionů by se tak musela předpokládat existence tenkého disku temné hmoty, který by ležel v rovině disku Galaxie.[21] Navíc cykly nejsou synchronizovány: poslední přechod galaktickou rovinou Slunce učinilo asi před 1 milionem let, zatímco poslední periodické vymírání bylo dle předpovědi v době před 11 miliony let. Pravděpodobnější se proto jeví poslední hypotéza, která předpokládá existenci planety X o hmotnosti několikanásobku hmotnosti Země, která by obíhala někde za drahou Neptunu a díky precesi perihelu/afelu její dráhy by v pravidelných intervalech vháněla komety směrem k Zemi.[22] Nezávisle na této hypotéze byla v r. 2014 na základě nenáhodně orientovaných drah několika TNO vyslovena domněnka, že by za drahou Neptunu mohla být další velká planeta (planeta Devět), která by tyto vysvětlila. Pro tuto hypotézu byly letech 2015 a 2016 sneseny další argumenty a v současnosti (2016) probíhají cílená hledání této hypotetické planety.[23][24][25]

Další hypotézou o skryté periodicitě vymírání (v tomto případě v intervalech 27,5 milionu let) publikoval tříčlenný tým vědců koncem roku 2020.[26] Jejich studie z roku 2021 tuto periodicitu objevila jak v četnosti vymírání, tak v četnosti geologických událostí s možnou mimozemskou příčinou.[27]

Dopady na biosféru

Po hromadném vymírání je samozřejmě celkový počet žijících druhů na planetě značně redukovaný, nicméně relativně krátce po katastrofě se uprázdněná místa začínají zaplňovat novými druhy. Ty jsou v počátku bez větších specializací a jedná se o druhy dalo by se říci až univerzální. Z těchto druhů, které se rychle rozšířily napříč uvolněnými ekosystémy, se pozdějším vývojem jejich jednotlivých populací vyvíjejí více specializované druhy. Ty pak obnovují bohatou biodiverzitu, která předcházející katastrofou značně utrpěla. Ukazuje se, že hromadné vymírání urychluje evoluci[28] a rozšiřuje diverzitu.[29][29] Naruší se tak status quo (srovnej: zamrzlá evoluce). Podobně v mikrosvětě jako následek masového ničení organismů vzniká evolucí antibiotická rezistence.

Každé takovéto vymírání zároveň znamená zásadní změnu v dosavadním vývoji biosféry a je více nežli oprávněné tvrdit, že nebýt těchto hromadných vymírání, nebylo by zde ani člověka.

Mezery ve fosilním záznamu mohou přinést mylné závěry při interpretaci délky trvání těchto událostí. Ve skutečnosti pravděpodobně vymírání trvala déle a obnova společenstev byla naopak kratší a rychlejší.[30]

Historie hromadných vymírání

V průběhu geologické historie Země došlo k celé řadě vymírání, která jsou doložena fosilními záznamy. Nejstarší známé hromadné vymírání se stalo na samotném počátku kambria zhruba před 550 milióny let. Důkazů pro tuto událost je zatím málo, ale z fosilních záznamů náhle mizí některé skupiny životních forem z prekambria. Nejmladší hromadné vymírání se odehrálo v pleistocénu (zhruba jen před pouhými 100 000 až 50 000 lety) a jako jedna z jeho zvažovaných hlavních příčin je člověk.

Michael Rampino se snaží vysvětlit periodičnost vymírání pomocí astronomických vlivů. Kvaziperiodu impaktů 26 miliónů let může způsobovat galaxie Mléčná dráha.[31] Podobnou kvaziperiodu 27,5 milionů let má i geologická činnost Země.[32] To poté periodicky ovlivňuje vulkanismus.[33]

Chronologický seznam

Velká pětka vymírání

Velká pětka vymírání je souhrnné označení pro pět největších hromadných vymírání v dějinách Země, které stanovili paleontologové Jack Sepkoski a David M. Raup roku 1982.[38][39] Všech patero vymírání koinciduje (je ve shodě) s velkým vulkanismem.[40][41] Jde o následující události:

Vymírání ordovik-silur

K vymírání na přelomu ordoviku a siluru vedly dosud nejasné události (vedou se diskuse o kandidátech: gama záblesk a vulkanismus, který produkuje sopečné plyny, jako je rtuť),[43] které způsobily před 440–450 miliony let vymření 27 % čeledí a 57 % všech tehdejších rodů. Někteří vědci jej dokonce považují za druhé největší vymírání. Další teorie dává do souvislosti zvýšený obsah toxických kovů, který doprovázejí malformace, jež jsou u fosílií té doby značně častější.[44]

Vymírání v pozdním devonu

K vymírání v pozdním devonu (po kterém následoval karbon) došlo zhruba před 360–375 miliony lety. Jeho příčiny nejsou zcela jasné. Hovoří se o globálním ochlazování, vulkanismu nebo i o pádu komety. Uvažuje se i o přispění rozšíření rostlin (lesů), které tak změnily klima.[45] Důsledkem byl pokles hladiny moří a pokles obsahu kyslíku v oceánech, kvůli čemuž vyhynulo 19 % čeledí, 50 % rodů a 70 % všech tehdejších druhů.

Vymírání perm-trias

Vymírání na rozhraní permu a triasu je vůbec největší vymírání v historii Země. Došlo k němu před 251 miliony lety a jako jeho nejpravděpodobnější příčina se jeví masivní vulkanická činnost (sibiřské trapy). Důsledkem bylo silné oteplení zemského povrchu, rapidní pokles kyslíku jak v atmosféře, tak v oceánech, pokles hladiny moří a vzrůst jejich salinity. V biosféře se tato řada změn promítla vymřením 57 % čeledí a 83 % všech tehdejších rodů, a to jak v říši rostlinné, tak živočišné, ve vodě i na souši. Toto vymírání a následky událostí, které jej zapříčinily, značně ovlivnily následující vývoj biosféry: doposud úspěšní synapsidi (mj. předkové savců) ustoupili na nové podmínky lépe přizpůsobeným archosaurům (mj. předkové dinosaurů a ptáků).

Vymírání trias-jura

Vymírání na přelomu triasu a jury proběhlo před 205 miliony let a vyhynulo při něm na 23 % čeledí a 48 % všech tehdejších rodů. Jeho příčiny jsou nejasné a nejčastěji se hovoří o gradujících změnách klimatu, fluktuaci hladiny moří, vulkanismu nebo asteroidu. Důsledkem tohoto vymírání vymizela většina nedinosauřích archosaurů a také většina synapsidů, z nichž přežili jen savci.[46]

Vymírání křída-paleogén

Vymírání na přelomu křídy a paleogénu (tzv. velké vymírání na konci křídy) je nejmladší z velké pětky vymírání a odehrálo se před 66 miliony lety. 17 % čeledí, 50 % rodů a 75 % všech tehdejších druhů vyhynulo. Toto vymírání (označované také jako K-T událost) ukončilo vládu dinosaurů na Zemi a všechny druhy neptačích dinosaurů vyhynuly. Také vyhynuli všichni pterosauři a amoniti. Jako příčina se nejčastěji uvádí pád asteroidu, krom toho je jako možná příčina zvažován vulkanismus či pokles mořské hladiny. Někteří se domnívají, že vymírání, které vyhubilo tolik čeledí jak na souši, tak v moři, vzniklo kombinací více příčin, které se odehrály ve stejném geologicky krátkém období. Právě toto vymírání je jedním z prvních odhalených v historii Země a díky spojitosti s vyhynutím dinosaurů také nejznámější.[47][48]

S tímto vymíráním se pojí také zajímavý příběh o objevu jeho příčiny. Dlouhou dobu se nepředpokládalo, že by dopad mimozemského tělesa mohl vést ke katastrofám typu hromadného vymírání druhů. První podobné myšlenky se objevily již v 50. letech 20. století, tehdy však pro ně ještě neexistovaly žádné hmatatelné důkazy. Průlomem v tomto směru pak byla zejména tzv. Alvarezova impaktní teorie, pojmenovaná po fyzikovi Luisi W. Alvarezovi, který ji spolu se svým synem Walterem (geologem) a dalšími dvěma kolegy z Berkeley publikoval v roce 1980. Zvýšené množství kovového prvku iridia v hraniční jílové vrstvě na přelomu křídy a paleogénu přiměla Alvareze spočítat, že před 66 miliony let se s naší planetou muselo střetnout kosmické těleso (planetka nebo kometární jádro) o průměru kolem 10 kilometrů. Dnes předpokládáme, že se jednalo o planetku z kategorie uhlíkatých chondritů o průměru asi 10 až 15 km, které dopadlo do oblasti současného Mexického zálivu a vytvořilo asi 200 km široký kráter Chicxulub.[49]

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Extinction event na anglické Wikipedii.

  1. Tokyo Institute of Technology. Artificial intelligence finds surprising patterns in Earth's biological mass extinctions. phys.org . 2020-12-10 . Dostupné online. (anglicky) 
  2. BOND, David P.G.; WIGNALL, Paul B. Volcanism, Impacts, and Mass Extinctions: Causes and Effects . Geological Society of America, 2014-09-01. Kapitola Large igneous provinces and mass extinctions: An update. Dostupné online. ISBN 9780813725055. DOI 10.1130/2014.2505(02). (anglicky) 
  3. ABBOTT, Dallas H; ISLEY, Ann E. Extraterrestrial influences on mantle plume activity. S. 53–62. Earth and Planetary Science Letters . 2002-12. Roč. 205, čís. 1–2, s. 53–62. Dostupné online. DOI 10.1016/S0012-821X(02)01013-0. (anglicky) 
  4. University of Oxford. Tardigrades: The last survivors on Earth. phys.org . 2017-07-14 . Dostupné online. (anglicky) 
  5. Australian National University. Supernovae showered Earth with radioactive debris. phys.org . 2016-04-06 . Dostupné online. (anglicky) 
  6. SOCHA, Vladimír. Podle jedné hypotézy vyhladila dinosaury nesmírně silná exploze supernovy. techfocus.cz . 2020-11-14 . Dostupné online. 
  7. JOHNSON-GROH, Mara. Are Cosmic Rays a Key to Forecasting Volcanic Eruptions?. eos.org . 2020-04-21 cit. 2022-12-23. Dostupné online. (anglicky) 
  8. EBISUZAKI, Toshikazu; MIYAHARA, Hiroko; KATAOKA, Ryuho; SATO, Tatsuhiko; ISHIMINE, Yasuhiro. Explosive volcanic eruptions triggered by cosmic rays: Volcano as a bubble chamber. S. 1054–1061. Gondwana Research online. 2011-06. Roč. 19, čís. 4, s. 1054–1061. Dostupné online. DOI 10.1016/j.gr.2010.11.004. (anglicky) 
  9. Vanderbilt University. Evidence that Earth's first mass extinction was caused by critters not catastrophe. phys.org online. 2015-09-02 cit. 2022-12-23. Dostupné online. (anglicky) 
  10. Flinders University. New theory suggests depletion of trace elements in the oceans a factor in mass extinctions. phys.org online. 2015-11-19 cit. 2022-12-23. Dostupné online. (anglicky) 
  11. University of Liverpool. Size doesn't matter: Rock composition determines how deadly a meteorite impact is. phys.org online. 2021-12-14 cit. 2022-12-23. Dostupné online. (anglicky) 
  12. GARTHWAITE, Josie; UNIVERSITY, Stanford. Scientists find oxygen levels explain ancient extinction slowdown. phys.org online. 2021-10-05 cit. 2022-12-23. Dostupné online. (anglicky) 
  13. Tohoku University. The bigger the temperature change, the larger the extinction event, reveals researcher. phys.org online. 2022-07-22 cit. 2022-12-23. Dostupné online. (anglicky) 
  14. SOCHA, Vladimír. Úžasný svět dinosaurů. Praha: Nakladatelství Triton, 2009. 320 s. ISBN 978-80-7387-276-2. S. 160. 
  15. OSBORNE, Hannah. Dinosaur extinction: Asteroid impact triggered massive volcanic eruptions at Deccan Traps. ibtimes.co.uk online. 2015-10-01 cit. 2022-12-23. Dostupné online. (anglicky) 
  16. SOCHA, Vladimír. Záhada kráteru Boltyš. OSEL.cz online. 1. června 2017. Dostupné online. 
  17. RAUP, David M.; SEPKOSKI, J. John. Periodicity of extenctions in the geologic past. Proceedings of the National Academy of Sciences of the United States of America online. 1984-02-01 cit. 2016-03-01. Roč. 81, čís. 3. Dostupné online. 
  18. ROHDE, Robert A.; MULLER, Richard A. Cycles in fossil diversity. Nature. Roč. 434, čís. 7030, s. 208–210. Dostupné online. DOI 10.1038/nature03339. 
  19. MELOTT, Adrian L.; BAMBACH, Richard K. Analysis of periodicity of extinction using the 2012 geological timescale. Paleobiology. Roč. 40, čís. 02, s. 177–196. Dostupné online cit. 2017-01-03. DOI 10.1666/13047. 
  20. SOCHA, Vladimír. Neviditelná Nemesis: Kde vězí tajemná hvězda smrti?. 100+1 zahraniční zajímavost online. 2020-09-10 cit. 2022-12-23. Dostupné online. 
  21. KRAMER, Eric David; ROWAN, Michael. Mass Extinctions and a Dark Disk. arXiv:1610.04239 astro-ph, physics:hep-ph. 2016-10-13. ArXiv: 1610.04239. Dostupné online cit. 2017-01-03. 
  22. WHITMIRE, Daniel P. Periodic mass extinctions and the Planet X model reconsidered. arXiv:1510.03097 astro-ph. 2015-10-11. ArXiv: 1510.03097. Dostupné online cit. 2017-01-03. 
  23. 'Planet Nine' May Exist: New Evidence for Another World in Our Solar System. Space.com. Dostupné online cit. 2017-01-03. 
  24. The Search for Planet Nine: New Finds Boost Case for Distant World. Space.com. Dostupné online cit. 2017-01-03. 
  25. Curious Tilt of the Sun Traced to Undiscovered Planet | Caltech. The California Institute of Technology. Dostupné online cit. 2017-01-03. 
  26. RAMPINO, Michael R.; CALDEIRA, Ken; ZHU, Yuhong. A 27.5-My underlying periodicity detected in extinction episodes of non-marine tetrapods. S. 3084–3090. Historical Biology online. 2021-11-02. Roč. 33, čís. 11, s. 3084–3090. Dostupné online. DOI 10.1080/08912963.2020.1849178. (anglicky) 
  27. RAMPINO, Michael R.; CALDEIRA, Ken; ZHU, Yuhong. A pulse of the Earth: A 27.5-Myr underlying cycle in coordinated geological events over the last 260 Myr. S. 101245. Geoscience Frontiers online. 2021-11. Roč. 12, čís. 6, s. 101245. Dostupné online. DOI 10.1016/j.gsf.2021.101245. (anglicky) 
  28. University of Texas at Austin. Computer scientists find mass extinctions can accelerate evolution. phys.org online. 2015-08-12 cit. 2022-12-23. Dostupné online. (anglicky) 
  29. a b University of Lincoln. New research reveals extinction is key to terrestrial vertebrate diversity. phys.org online. 2015-11-24 cit. 2022-12-23. Dostupné online. (anglicky) 
  30. HOLLAND, Steven M. The Stratigraphy of Mass Extinctions and Recoveries. S. 75–97. Annual Review of Earth and Planetary Sciences online. 2020-05-30 cit. 2020-06-03. Roč. 48, čís. 1, s. 75–97. Dostupné v archivu pořízeném z originálu dne 2020-06-03. DOI 10.1146/annurev-earth-071719-054827. (anglicky) 
  31. Scientists find link between comet, asteroid showers and mass extinctions. sciencedaily.com online. 2015-10-20 cit. 2022-12-23. Dostupné online. (anglicky) 
  32. New York University. The 27.5-million-year cycle of geological activity. phys.org online. 2021-06-18 cit. 2022-12-23. Dostupné online. (anglicky) 
  33. Lethal climate change millions of years ago was due to volcanic eruptions, scientists conclude. phys.org online. cit. 2023-10-10. Dostupné online. 
  34. https://phys.org/news/2023-04-geology-experts-evidence-dual-mass.html - Geology experts find evidence of dual mass extinctions 260 million years ago
  35. University of Bristol. Discovery of a new mass extinction. phys.org online. 2020-09-16 cit. 2022-12-23. Dostupné online. (anglicky) 
  36. University of Rhode Island. Asteroid, climate change not responsible for mass extinction 215 million years ago. phys.org online. 2020-05-27. Dostupné online. (anglicky) 
  37. LOUKOTA, Ladislav. Měli jsme štěstí. Předci lidí při dosud neznámém vymírání téměř zmizeli ze světa. nedd.tiscali.cz online. 2021-10-11 cit. 2022-12-23. Dostupné online. 
  38. Raup, D. & Sepkoski, J. Mass extinctions in the marine fossil record. Science. 1982, roč. 215, s. 1501–1503. DOI 10.1126/science.215.4539.1501. PMID 17788674. 
  39. Morell, V. The Sixth Extintion. National Geographic Magazine. 1999 Februar vol 195, no. 2, s. 42–59.
  40. Geological Society of America. Mercury rising: New evidence that volcanism triggered the late Devonian extinction. phys.org online. 2018-05-01 cit. 2022-12-23. Dostupné online. (anglicky) 
  41. GREEN, Theodore; RENNE, Paul R.; KELLER, C. Brenhin. Continental flood basalts drive Phanerozoic extinctions. S. e2120441119. Proceedings of the National Academy of Sciences online. 2022-09-20. Roč. 119, čís. 38, s. e2120441119. Dostupné online. DOI 10.1073/pnas.2120441119. (anglicky) 
  42. SOCHA, Vladimír. Dinosauři skutečně žili i v paleocénu. osel.cz online. 2019-12-12 cit. 2022-12-23. Dostupné online. 
  43. Tohoku University. Large volcanic eruption may have caused the first mass extinction. phys.org online. 2017-05-17 cit. 2022-12-23. Dostupné online. (anglicky) 
  44. KATZ, Cheryl. New Theory for What Caused Earth's Second-Largest Mass Extinction. National Geographic Magazine online. 2015-09-11 cit. 2022-12-23. Dostupné online. (anglicky) 
  45. University of Alabama in Tuscaloosa. Troublesome trees: spread of forests contributed to ancient extinction. phys.org online. 2019-06-19 cit. 2022-12-23. Dostupné online. (anglicky) 
  46. SOCHA, Vladimír. Vymírání na konci triasu. OSEL.cz online. 26. února 2021. Dostupné online.  (česky)
  47. POZNIAK, Helen. Extinction day online. imperial.ac.uk, 2020 cit. 2022-12-23. Dostupné online. (anglicky) 
  48. SOCHA, Vladimír. Poslední den druhohor. OSEL.cz online. 20. březen 2017. Dostupné online.  (česky)
  49. SOCHA, Vladimír. Dějiny Alvarezovy impaktní teorie. OSEL.cz online. 22. června 2022. Dostupné online.  (česky)

Literaturaeditovat | editovat zdroj

  • BUCHANAN, Mark. Všeobecný princip: věda o historii: proč je svět jednodušší, než si myslíme. Praha : Baronet, 2004. ISBN 80-7214-644-0

Související článkyeditovat | editovat zdroj

Externí odkazyeditovat | editovat zdroj


Zdroj:https://cs.wikipedia.org?pojem=Hromadná_vymírání
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Úmrtí v roce 2021
Úniková rychlost
Ústava Spojených států amerických
Čínština
Čínské znaky
Čínský císař
Čao Wen-chua
Čarodějnictví
Časové pásmo
Černá díra
Černé moře
Černý trpaslík
Červený obr
Česká Kubice
Česká Wikipedie
Česká západní dráha
České království
Česko
Říše Ming
Římské číslice
Řecko
Šáhruch
Šablona:Cite book
Šablona:Cite journal
Šablona:Infobox - železniční trať/legenda
Šestiočka sadistická
Španělští Habsburkové
Španělská Florida
Španělské impérium
Španělské Nizozemí
Španělsko
Španělsko v době osvícenství
Švédsko
Ťia-ťing
Železniční napájecí soustava
Železniční trať Domažlice – Planá u Mariánských Lázní
Železniční trať Horažďovice předměstí – Domažlice
Železniční trať Nýřany – Heřmanova Huť
Železniční trať Plzeň–Cheb
Železniční trať Plzeň – Furth im Wald
Železniční trať Staňkov–Poběžovice
Železo
Život
1. březen
1. duben
1. leden
1. srpen
1. září
10. září
11. duben
11. listopad
11. srpen
11. září
12. únor
12. červen
13. únor
13. říjen
13. září
14. červen
14. červenec
14. listopad
14. srpen
15. červenec
15. duben
15. srpen
1512
1565
16. únor
16. duben
16. listopad
16. prosinec
16. srpen
16. století
1649
1653
1659
1664
1668
1669
1670
1671
1682
1684
1685
1697
1698
1699
17. červen
17. leden
17. prosinec
17. století
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
18. prosinec
18. století
1800
1801
1802
1804
1808
1810
1812
1815
1816
1829
1838
1855
1870
19. říjen
19. století
1920
1960
1973
1994
2. březen
2. tisíciletí
20. únor
20. červen
20. červenec
20. leden
20. listopad
20. prosinec
20. století
2005
2017
21. březen
21. květen
21. srpen
21. září
22. říjen
23. červen
23. květen
23. leden
24. únor
24. březen
24. květen
25. říjen
25. listopad
26. únor
26. červenec
26. březen
26. květen
26. leden
27. prosinec
28. březen
28. prosinec
28. srpen
28. září
3. září
30. říjen
30. září
31. květen
31. prosinec
4. červen
4. listopad
4. srpen
5. březen
5. srpen
6. prosinec
7. říjen
7. březen
7. leden
7. srpen
8. červen
8. červenec
8. srpen
81P/Wild-2
9. březen
9. září
Ašraf Ghaní
Abbás III.
Abenakové
Adrastea (měsíc)
Adrian Zingg
Afghánistán
Afrika
Akádie
Akrece
Aktivní galaktické jádro
Alaouite
Albánie
Americká válka za nezávislost
Amerika
Amharsko
Anglické království
Anglie
Anglo-španělská válka (1727–1729)
Anna Göldi
Anna Ivanovna
Anna Stuartovna
Appalačské pohoří
Aragonské království
Aristarchos ze Samu
Arizona
Arthur Eddington
Asie
Astrofotografie
Astronomická jednotka
Astronomie
Asymptotická větev obrů
Atom
Augusta Württemberská (1734–1787)
Austrálie
Autorita (knihovnictví)
Bílý trpaslík
Babylon (okres Domažlice)
Bahnstrecke Plzeň–Furth im Wald
Bastila
Bavorské kurfiřtství
Bavorsko
Berijev Be-200
Bitva na řece Čorna
Bitva na Abrahamových pláních
Bitva u Cassana
Bitva u Cullodenu
Bitva u Höchstädtu
Bitva u Malplaquet
Bitva u Oudenaarde
Bitva u Palásí
Bitva u Poltavy
Bitva u Quiberonu
Bitva u Ramillies
Bitva u Turína
Bitva u Varšavy (1920)
Bitva u Yorktownu (1781)
Bitva v zátoce Vigo
Blížejov
Bleskosvod
Boston
Bostonské pití čaje
Bourboni
Bourbonské Španělsko
Brestská pevnost
Britské impérium
Brumairový převrat
Brunšvicko-lüneburské kurfiřtství
Cape Breton
Carl Sagan
Casus belli
Celostátní dráha
Cenzorát
Champlainovo jezero
Charleston (Jižní Karolína)
Charles Alexandre de Calonne
Charles Bukowski
Charles Cornwallis, první markýz Cornwallis
Charles Louis Montesquieu
Charon (měsíc)
Chemická reakce
Chemický prvek
Chotěšov u Stoda
Chu Cung-sien
Claude de Villars
Commons:Featured pictures/cs
Connecticut (řeka)
Covid-19
Cung-tu
Dánsko-Norsko
Dějiny Anglie
Degenerovaný plyn
Deimos (měsíc)
Deklarace nezávislosti Spojených států amerických
Deklarace nezávislosti USA (Trumbull)
Devítiletá válka
Didius Iulianus
Diferenciální rotace
Digital object identifier
Dolní Kamenice (Holýšov)
Domažlice
Domenico Trezzini
Domobrana
Dopad neznámého tělesa na Jupiter roku 2009
Dráhová rezonance
Elektromagnetické spektrum
Elipsa
Eliptická galaxie
Emanuel Swedenborg
en:Jean Alaux
Encyklopedie
Encyklopedie aneb Racionální slovník věd, umění a řemesel
Energie
Epidemie
Etiopie
Europa (měsíc)
Evžen Savojský
Evropa
Excentricita dráhy
Exoplaneta
Falcké kurfiřtství
Federální okruhy Ruska
Filadelfský ústavní konvent
Filipína Alžběta Orleánská
Filip V. Španělský
Florida
Formation and evolution of the Solar System?oldid=364891809
Fosfidy
Fosilie
François-Joseph Gossec
François de Neufville de Villeroy
Francie
Francisco Zeno
Francouzi
Francouzské království
Francouzský král
Francouzsko-indiánská válka
František I. Rakouský
František II. Rákóczi
František Martin Pelcl
Franz Anton Mesmer
Frederik I. Švédský
Fred Hoyle
Fridrich I. Pruský
Fridrich II. Veliký
Fridrich Vilém I.
Furth im Wald
Furth im Wald–Plzeň-vasútvonal
Fyzika
Götingen
Galaktické jádro
Galaktický epicykl
Galaktický rok
Galaxie Mléčná dráha
Galaxie v Andromedě
Galileovy měsíce
Ganymed (měsíc)
Gemeinsame Normdatei
Geodata
Geologie
George Rooke
Georg Stahl
Gerd Müller
Gibraltar
Gravitační kolaps
Gravitace
Gregoriánský kalendář
Guido Starhemberg
Gunther Jakob
Habsburkové
Habsburská monarchie
Habsburské Španělsko
Haiti
Haitská revoluce
Hannoverské kurfiřtství
Havana
Heliocentrismus
Heliový záblesk
Helium
Hertzsprungův–Russellův diagram
Hertzsprungův–Russellův diagram#Horizontální větev
Hesensko-Kasselsko
Historie hypotéz vzniku a vývoje sluneční soustavy
Hlavní pás
Hlavní posloupnost
Hlavní strana
Hohenzollernové
Holýšov
Hradec u Stoda
Hromadná vymírání
Hubbleův vesmírný dalekohled
Hudsonův záliv
Hugenoti
Hustota
Hustota zalidnění
Hvězda
Hvězda typu T Tauri
Hvězdný vítr
Hvězdokupa
Hydrostatická rovnováha
Immanuel Kant
Indiáni
Infračervené záření
International Standard Book Number
International Standard Serial Number
Internet Archive
Io (měsíc)
Irokézové
Irsko
Itálie
Izotop
Józef Piłsudski
Jaan Kaplinski
Jaderná reakce
Jakobitské povstání
Jakub II. Stuart
James Fitzjames, vévoda z Berwicku
James Watt
Jan Antonín Otto Minquitz z Minquitzburgu
Jan Josef z Vrtby
Jan Nepomucký
Jan V. Portugalský
Japonsko
Jean-Baptiste Rey
Jean-Jacques Rousseau
Jen Sung
Jiří Grygar
Jiří I.
Jiří II.
Jiří II. (britský král)
Jiří III.
Jiří Pernes
Jižní Amerika
Jižní federální okruh
John Churchill, vévoda z Marlborough
John Leake
Josef Ferdinand Bavorský
Josef I. Habsburský
Josef II.
Joseph Wright of Derby
JSTOR
Jupiter (planeta)
Kábul
Křemičitany
Kanada
Karel Alexandr Württemberský
Karel II. Španělský
Karel II. Stuart
Karel VI.
Karel XII.
Kastilská koruna
Katalánské knížectví
Katalánsko
Kateřina II. Veliká
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Narození v roce 1734
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Katolicismus
Kchang-si
Kelvin
Kerč
Klement XII.
Kmitání
Kolínské kurfiřtství
Kolize galaxie v Andromedě s Mléčnou dráhou
Kometa
Kongres Spojených států amerických
Kontinent
Kovy
Královské Uhersko
Království Velké Británie
Kráter
Kríkové
Kraje v Rusku
Krasnodar
Krasnodarský kraj
Kryštof Karel Gayer
Krymská válka
Krystalická struktura
Kubáň
Kuiperův pás
Kurt Biedenkopf
Květen
Kyjev
Kypr
Lady Diana Beauclerk
Lalibela
Ledový obr
Leopold I.
Letní olympijské hry 2020
Librační centrum
Library of Congress Control Number
Linia kolejowa Plzeň – Furth im Wald
Lisabonské zemětřesení
Lithium
Lokomotiva 754
Louise de Keroual
Louis Joseph de Bourbon, vévoda z Vendôme
Louis Lully
Ludvík Vilém I. Bádenský
Ludvík XIV.
Ludvík XV.
Ludvík XVI.
Luk
Lutyšské knížecí biskupství
Místní skupina galaxií
Místokrálovství Nové Španělsko
Měsíc
Měsíce Jupiteru
Měsíce Saturnu
Měsíc (satelit)
Měsíc planetky
Město-hrdina
Mahmud I.
Maine
Malá noční hudba
Mallorské království
Mantovské vévodství
Marianna Benti Bulgarelli
Marie I. Portugalská
Marie Terezie
Maroko
Mars (planeta)
Massachusetts
Maxmilián II. Emanuel
Menorca
Merkur (planeta)
Metalicita
Meteorit
Meteor Crater
Methan
Metis (měsíc)
Mezihvězdné prostředí
Michael Mark Woolfson
Michal Bedřich z Althanu
Mikmakové
Mikrometeorit
Milánské vévodství
Milavče
Minsk
Miroslav Tetter
Mississippi (řeka)
Mlhovina v Orionu
Mlhovinová hypotéza
Mobile
Model z Nice
Modrý obr
Mohawkové
Mohykáni
Molekulární mračno
Moment hybnosti
Morové epidemie v českých zemích
Moskva
Motorová jednotka 844
Motorový vůz 842
Mušketa
Mughalská říše
Murmansk
MusicBrainz
Nádir Šáh
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní knihovna České republiky
Národní knihovna Španělska
Národní knihovna Izraele
Národní parlamentní knihovna Japonska
Následník trůnu
Nýřany
Německo
Načezové
Nadace Wikimedia
Nadmořská výška
Nakamikado
Napoleon Bonaparte
National Archives and Records Administration
Nature
Neapolské království
Neptun (planeta)
Newfoundland
New Hampshire
Nicolaas Laurens Burman
Nikl
Nová Anglie
Nová Francie
Nové Skotsko
Nový Brunšvik
Nový Jižní Wales
Novorossijsk
Novorossijsk (rozcestník)
Nukleosyntéza
Nystadská smlouva
Oběžná dráha
Obyvatelná zóna
Ochrana životního prostředí
Oděsa
Oddělený disk
Olympijské hry
Online Computer Library Center
Oortův oblak
OpenStreetMap
Osmanská říše
Ostrov prince Edvarda
Osvračín
Otáčení
Ottův slovník naučný
Ottův slovník naučný/Novorossijsk
Oxidy
Oxid uhličitý
Pátek
Píka
Přístav
Pacifická astronomická společnost
Pandemie covidu-19
Pandemie covidu-19 v Česku
Panspermie
Papež
Parní stroj
Parsek
Pchin-jin
Pensacola
Personální unie
Peter Perez Burdett
Petrohrad
Petr Havel
Petr I. Veliký
Phobos (měsíc)
Pierre-Simon Laplace
Pierre Simon de Laplace
Piráti wo-kchou v éře Ťia-ťing
Planetární mlhovina
Planetární prstenec
Planetární soustava
Planeta
Planetesimála
Planetka
Planetologie
Ploutvonožci
Pluto (trpasličí planeta)
Plynný obr
Plzeň-Jižní Předměstí (nádraží)
Plzeň hlavní nádraží
Poštovní směrovací číslo
Poláci
Polské království
Pontiacovo povstání
Portál:Španělsko
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kanada
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Novověk
Portál:Obsah
Portál:Příroda
Portál:Spojené státy americké
Portál:Sport
Portál:Válka
Portugalské království
Portugalsko
Posmrtné jméno
Povinná školní docházka
Povrch Země
Pozdní velké bombardování
Prokop Diviš
Proměnná hvězda
Protestantismus
Protohvězda
Protoplanetární disk
Protoplaneta
Provozovatel dráhy
Prstencová mlhovina
Pruské království
Prusko
Prusko-francouzská válka
Prusové
První dělení Polska
Q150701#identifiers
Q150701#identifiers|Editovat na Wikidatech
Q15760
Q15760#identifiers
Q15760#identifiers|Editovat na Wikidatech
Q2890323
Q803015
Q869045#identifiers
Q869045#identifiers|Editovat na Wikidatech
Québec
Queen Anne's War?oldid=1009855349
Rázová vlna
Radbuza
Radioaktivní datování
Rakouští Habsburkové
Rakouské arcivévodství
Rakouské císařství
Rakousko
Rakousko-turecká válka (1716–1718)
Rakousko-turecká válka (1787–1791)
Ralph Abercromby
Rastattský mír
Regio-Shuttle RS1
Richterova stupnice
Roční období
Robert Roy MacGregor
Rocheova mez
Rok
Ropná skvrna
Rozchod koleje
Rozloha
Rozptýlený disk
Ruština
Rudá armáda
Ruské impérium
Rusko
Rusko-turecká válka (1768–1774)
Sün-fu
Sü Chaj
Safíovci
Sardinie
Sardinské království
SARS-CoV-2
Saturn (planeta)
Savannah (řeka)
Savojské vévodství
Savojsko
Science
Sedmihradské knížectví
Sedmiletá válka
Senkaku
Sergej Adamovič Kovaljov
Sevastopol
Severní Amerika
Severní válka
Seznam světového dědictví v Africe#Etiopie
Shoemaker-Levy 9
Sicílie
Sicilské království
Skleníkové plyny
Skleníkový efekt
Skotské království
Skvrňany
Slapy
Slunce
Sluneční soustava
Sluneční vítr
Smlouva
Smolensk
Sněžná čára (astrofyzika)
Sonda Cassini
Soubor:胡宗憲.jpg
Soubor:236084main MilkyWay-full-annotated cs.jpg
Soubor:Artist's concept of collision at HD 172555.jpg
Soubor:Bandera de España 1701-1760.svg
Soubor:Banner of arms crown of Castille Habsbourg style.svg
Soubor:Barringer Meteor Crater, Arizona.jpg
Soubor:Before Destruction (35073757404).jpg
Soubor:Bouchot - Le general Bonaparte au Conseil des Cinq-Cents.jpg
Soubor:BSicon ÜST.svg
Soubor:BSicon ABZg+l.svg
Soubor:BSicon ABZg+nr.svg
Soubor:BSicon ABZgl.svg
Soubor:BSicon ABZgnl.svg
Soubor:BSicon ABZgnr.svg
Soubor:BSicon ABZgr.svg
Soubor:BSicon BHF.svg
Soubor:BSicon BST.svg
Soubor:BSicon BUE.svg
Soubor:BSicon eABZg+l.svg
Soubor:BSicon eABZgl.svg
Soubor:BSicon eBST.svg
Soubor:BSicon GRENZE.svg
Soubor:BSicon HST.svg
Soubor:BSicon KMW.svg
Soubor:BSicon KRZo.svg
Soubor:BSicon STR+INCIDO.svg
Soubor:BSicon STR+r.svg
Soubor:BSicon STRr.svg
Soubor:BSicon WBRÜCKE2.svg
Soubor:Catherine II by I.Argunov (1762, Russian museum).jpg
Soubor:Charles II (1670-80).jpg
Soubor:Coat of Arms of Novorossiysk.svg
Soubor:Coa Hungary Country History (14th century).svg
Soubor:Croix huguenote.svg
Soubor:Death of Father Sebastian Rale of the Society of Jesus.jpg
Soubor:Declaration of Independence (1819), by John Trumbull.jpg
Soubor:DeerfieldRaid1704.jpg
Soubor:Didius Julianus (cropped) - Residenz Museum - Munich.jpg
Soubor:Europe c. 1700.png
Soubor:EvacutionOfPortRoyal1710byCWJefferys.png
Soubor:Flag of Cross of Burgundy.svg
Soubor:Flag of England.svg
Soubor:Flag of Great Britain (1707–1800).svg
Soubor:Flag of Novorossiysk.svg
Soubor:Flag of Spain (1760–1785).svg
Soubor:HaverhillRaid1708.png
Soubor:JosephFerdinand.jpg
Soubor:Jozef Pilsudski1.jpg
Soubor:Lhborbits.png
Soubor:Louis XIV of France.jpg
Soubor:M42proplyds.jpg
Soubor:M57 The Ring Nebula.JPG
Soubor:Map of Russia - Krasnodar Krai (Crimea disputed).svg
Soubor:MassacreOfTheIndiansByOrderOfChurch.png
Soubor:Mohawk-kings.jpg
Soubor:Nouvelle-France map-en.svg
Soubor:Nov Pan.jpg
Soubor:Peter der-Grosse 1838.jpg
Soubor:Pierre-Simon Laplace.jpg
Soubor:Plzen cz railway-main-station 1.JPG
Soubor:Portrait, Pierre Le Moyne d'Iberville, Montréal Archives.jpg
Soubor:PortRoyalAcadia1702.jpg
Soubor:Protoplanetary-disk.jpg
Soubor:QueenAnnesWarBefore.svg
Soubor:Quibcardinaux2.jpg
Soubor:Royal Standard of King Louis XIV.svg
Soubor:Royal Standard of the King of France.svg
Soubor:SirJohnLeake.jpg
Soubor:Solar Life Cycle cs.svg
Soubor:Sun red giant cs.svg
Soubor:Vendome-and-PhilipV.jpg
Soubor:Vitčice - socha svatého Jana Nepomuckého.jpg
Soubor:Voyager 2 Neptune and Triton.jpg
Soubor:Western Europe Utrecht Treaty.jpg
Soubor:Wiki letter w.svg
Sovětsko-polská válka
Speciální:Co odkazuje na/Železniční trať Plzeň – Furth im Wald
Speciální:Hledání
Speciální:Kategorie
Speciální:Moje diskuse
Speciální:Moje příspěvky
Speciální:Náhodná stránka
Speciální:Nové stránky
Speciální:Poslední změny
Speciální:Související změny/Železniční trať Plzeň – Furth im Wald
Speciální:Speciální stránky
Speciální:Statistika
Speciální:Zdroje knih/0-670-80379-0
Speciální:Zdroje knih/0030062284
Speciální:Zdroje knih/1-58381-134-6
Speciální:Zdroje knih/80-204-0637-9
Speciální:Zdroje knih/80-204-0805-3
Speciální:Zdroje knih/80-7185-380-1
Speciální:Zdroje knih/80-7277-008-X
Speciální:Zdroje knih/80-85876-25-6
Speciální:Zdroje knih/80-902745-5-2
Speciální:Zdroje knih/978-0-300-05917-5
Speciální:Zdroje knih/978-0-471-24690-9
Speciální:Zdroje knih/978-0-520-05126-3
Speciální:Zdroje knih/978-0-582-42401-2
Speciální:Zdroje knih/978-0-7425-6094-9
Speciální:Zdroje knih/978-0-7735-2699-0
Speciální:Zdroje knih/978-0-8020-3755-8
Speciální:Zdroje knih/978-0-8032-3575-5
Speciální:Zdroje knih/978-0-8032-9861-3
Speciální:Zdroje knih/978-0-8078-2910-3
Speciální:Zdroje knih/978-0-8122-1869-5
Speciální:Zdroje knih/978-0-8173-0528-4
Speciální:Zdroje knih/978-0-8203-0305-5
Speciální:Zdroje knih/978-0-8263-0706-4
Speciální:Zdroje knih/978-0470092972
Speciální:Zdroje knih/978-1-85109-411-0
Speciální:Zdroje knih/978-1854109613
Speciální:Zdroje knih/978-84-16473-45-8
Speciální:Zdroje knih/9780874515268
Spirála
Spojené království
Spojené provincie nizozemské
Spojené státy americké
Společnost Hudsonova zálivu
Správa železnic
Srážka vlaků u Milavčí
Stát
Středomoří
St. Augustine (Florida)
St. John's (Newfoundland a Labrador)
Staňkov (okres Domažlice)
Stanislav I. Leszczyński
Stardust (sonda)
Starosta
Stephan Rautenstrauch
Stod
Století
Sulfidy
Supernova
Světelný rok
Světový oceán
Svatá říše římská
Svatý Kryštof a Nevis
Tálibán
Tření
Telefonní předvolba
Teorie chaosu
Teorie relativity
Teorie velkého impaktu
Teplota
Teplota tání
Terestrická planeta
Termonukleární fúze
Tigrajská lidově osvobozenecká fronta
Titan (měsíc)
Tlak
Tlučná
Tokio
Toleranční patent
Tomahavk
Tomas Venclova
Tony Esposito (lední hokejista)
Tovaryšstvo Ježíšovo
Triton (měsíc)
Tula
Turecko
Tuscarorové
Uhersko
Uhlík
Ukrajinština
UNESCO
Uran (planeta)
UTC+3
Utrechtský mír
Válka
Válka čtverné aliance
Válka krále Filipa
Válka krále Viléma
Válka královny Anny
Válka o španělské dědictví
Válka o bavorské dědictví
Válka o polské následnictví
Válka o rakouské dědictví
Válka v Tigraji
Vázaná rotace
Vít Vlnas
Vakcína proti covidu-19
Valencijské království
Vejprnice
Velká aliance
Velká francouzská revoluce
Velká jezera
Velký křach
Velký montréalský mír
Venuše (planeta)
Vesmír
Viktor Amadeus II.
Virginie
Virtual International Authority File
Vitčice
Vital Šyšov
Vladimir Mitrofanovič Puriškevič
Vodík
Voda
Voda na Marsu
Vodní pára
Volgograd
Voyager 2
Vypařování
Vznik a vývoj sluneční soustavy
Württemberské vévodství
Wang Č’ (pirát)
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2021
Wikipedie:Autorské právo#Publikování cizích autorských děl
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2021
Wikipedie:Ověřitelnost
Wikipedie:Pahýl
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/srpen
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:WikiProjekt Překlad/Rady
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2021
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Wolfgang Amadeus Mozart
Wolfgang von Kempelen
WorldCat
Yves-Joseph Kerguélen-Trémarec
Záření
Zářivý výkon
Zářivost
Zákon zachování hybnosti
Západní Evropa
Závěť
Závist (okres Blansko)
Zakázané moře
Zbůch
Země
Zeměpisné souřadnice
Zemětřesení na Haiti 2021
Země prince Ruprechta
Zemská osa
Zubřina




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk