Elektronvolt - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Elektronvolt
 ...
Elektronvolt je energie, kterou získá elektron nebo proton při urychlení napětím jednoho voltu.[pozn 1]

Elektronvolt (značka eV) je jednotka práce a energie mimo soustavu SI. Odpovídá kinetické energii, kterou získá elektron urychlený ve vakuu napětím jednoho voltu.[1] Používá se běžně k měření malých množství energie zejména v částicové fyzice, fyzikální chemii apod., protože obvyklá energie jedné částice je v joulech velmi malé číslo. Zároveň je to jednotka technicky výhodná vzhledem k běžným metodám měření energie částic.

Elektronvolt lze převést na odvozenou jednotku energie soustavy SI joule podle vztahu:

(přesně).[2][pozn 2]

Hodnota číselně odpovídá náboji elektronu v coulombech, protože práce vykonaná na náboji elektrickou silou se počítá jako součin náboje (1 e) a napětí (1 V). Stejnou energii získá při pohybu v elektrostatickém poli i jiná částice se stejně velkým nábojem, například proton, pozitron či mion.

Elektronvolt není mezi standardními jednotkami soustavy SI. Jeho hodnota je určována experimentálně a postupně se upřesňuje.[3] Přesto Mezinárodní výbor pro míry a váhy povoluje elektronvolt k užívání společně s ostatními jednotkami SI,[4] jakož i další dvě experimentálně stanovené jednotky: atomovou hmotnostní konstantu a astronomickou jednotku.

Elektronvolt se běžně využívá pro vyjádření mnoha dalších veličin, například hmotnosti, teploty nebo dokonce času.

Velikost jednotky

Elektronvolt je v běžných měřítkách extrémně malé množství energie. Energie pohybu letícího komára je přibližně bilion elektronvoltů.[5] Jednotka je proto užitečná tam, kde jsou typické energie velmi malé, to znamená ve světě částic. Také zde je 1 eV často poměrně malá energie, takže se používají větší násobky a předpony: 1 keV je tisíc eV, 1 MeV je milion eV, 1 GeV je miliarda eV, 1 TeV je bilion eV. Někdy se zkratka používá jako akronym, lze se tedy setkat i s jejím skloňováním.[6]

Největší urychlovač částic (LHC) dodá každému protonu energii 7 TeV.[7] Rozbitím jediného jádra uranu 235U se uvolní přibližně 215 MeV.[8] Sloučením jednoho jádra atomu deuteria s jádrem tritia se uvolní 17,6 MeV.[8] V obrazovkách barevných televizorů jsou elektrony urychlovány vysokým napětím kolem 32 tisíc voltů, takže elektrony získávají kinetickou energii 32 keV. Dobře se elektronvolt hodí k měření energie chemických vazeb, jsou to řádově jednotky či desítky eV na jednu molekulu.[8] K vytržení elektronu z atomu vodíku (ionizaci) je potřeba 13,6 eV.[8] Řádově jednotky eV má také energie fotonů viditelného světla.[8] Energie menší než elektronvolt se vyskytují v termodynamice, například střední kinetická energie částic vzduchu při pokojové teplotě je 38 meV (milielektronvolt).[8]

Rychlost elektronu s kinetickou energií 1 eV je přibližně 593 km/s. Rychlost protonu se stejnou kinetickou energií je pak jen 13,8 km/s.

Velikost elektronvoltu v jednotkách SI se určuje měřením náboje elektronu. Nejpřesnější ze známých metod je měření Josephsonova jevu, kterým se určí hodnota Josephsonovy konstanty . Velikost elementárního náboje se pak stanoví ze vztahu . Zde je von Klitzingova konstanta, která je změřena řádově přesněji než . Relativní směrodatná odchylka měření Josephsonovy konstanty je 2,5×10−8 (2,5 miliontiny procenta) a právě takovou přesnost má i převod elektronvoltu na jouly.[2]

Užití při měření

Zařízení k měření fotoelektrického jevu: K – katoda, M – mřížka, A – anoda, P – potenciometr

V technické praxi je výhodné, že pro částice s elementárním nábojem odpovídá změna energie v elektronvoltech přímo elektrickému napětí ve voltech, kterým je částice urychlena (či zbrzděna). Příkladem může být aparatura k pozorování vnějšího fotoelektrického jevu, kde se užívá brzdné elektrické pole ke zjištění energie elektronů.

Světlo (či jiné záření) prochází okénkem do evakuované baňky a dopadá na katodu, aby z jejího povrchu vytrhlo elektrony. Ty prolétají skrze mřížku, dopadají na anodu a vytvářejí tak v obvodu elektrický proud, který měříme mikroampérmetrem. Abychom stanovili energii vyletujících elektronů, nastavíme pomocí potenciometru brzdné napětí mezi katodu a mřížku. Málo energetické elektrony jsou tímto elektrickým polem vráceny zpět na katodu a neúčastní se vedení proudu. Pokud má ale elektron dostatečnou kinetickou energii, brzdné pole překoná a pokračuje k anodě. Potřebná kinetická energie v elektronvoltech přímo odpovídá brzdnému napětí ve voltech. Můžeme tedy experimentálně zjistit krajní hodnotu napětí mezi katodou a mřížkou, při němž obvodem ještě prochází proud, například 1,2 voltu. Znamená to, že světlo dodává elektronům kinetickou energii 1,2 elektronvoltu.

V praxi tedy často porovnáváme neznámou hodnotu energie částice přímo s elektronvoltem a nikoli s jednotkami soustavy SI. Je to jeden z hlavních důvodů k zavedení této jednotky. Nepřesnost převodního koeficientu mezi eV a J je obvykle zcela zanedbatelná vzhledem k chybám měření v běžných laboratorních podmínkách. Navíc elektronvolt lze podle jeho definice realizovat výrazně přesněji než joule podle definice SI.

Konstanty

Některé fyzikální konstanty mají rozměr energie, případně v kombinaci s dalšími veličinami. K jejich vyjádření lze místo joulů používat elektronvolty. Skupina CODATA uvádí v doporučení z roku 2010 tyto hodnoty konstant a směrodatných odchylek.[2][pozn 2]

Veličina Hodnota Význam
Planckova konstanta (přesně) Elementární kvantum akce
redukovaná Planckova konstanta (přesně) elementární kvantum momentu hybnosti
Boltzmannova konstanta (přesně) Vztah mezi energií částic a teplotou termodynamického systému
Rydbergova konstanta Ionizační energie vodíku
Atomová hmotnostní konstanta Dvanáctina klidové energie atomu uhlíku
Planckova energie Přirozená jednotka energie
Bohrův magneton Jednotka pro magnetický moment elektronu
Jaderný magneton Jednotka pro magnetický moment atomových jader

Energie fotonů

Barva světla přímo souvisí s energií fotonu. Lidské oko vnímá rozsah 1,65 – 3,27 eV.

Podle kvantové teorie se světlo a veškeré jiné elektromagnetické záření skládá z částicfotonů, jejichž energie je přímo úměrná frekvenci světla.

Zde je Planckova konstanta, je rychlost světla ve vakuu, je frekvence a je vlnová délka. Vyjádříme-li součin v jednotkách eV · nm, dostaneme užitečné vyjádření energie fotonu v elektronvoltech.

[pozn 3]

Viditelné světlo i okolní infračervené a ultrafialové záření je tedy tvořeno fotony s energií řádově v jednotkách elektronvoltů.

Další veličiny udávané v elektronvoltech

V částicové fyzice se elektronvolty, jejich násobky a mocniny běžně užívají i k vyjádření hodnot jiných veličin než energie. Tato konvence je postavena na faktu, že veličiny k sobě pojí základní fyzikální vztah, který má tvar přímé úměrnosti. Je-li energie v nějakém kontextu úměrná veličině , zapisujeme to jako rovnici

kde je konstanta úměrnosti. Obvykle je některá ze základních fyzikálních konstant, nejčastěji rychlost světla ve vakuu , redukovaná Planckova konstanta , Boltzmannova konstanta , gravitační konstanta








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk