Derivations of the Lorentz transformations - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Derivations of the Lorentz transformations
 ...

There are many ways to derive the Lorentz transformations using a variety of physical principles, ranging from Maxwell's equations to Einstein's postulates of special relativity, and mathematical tools, spanning from elementary algebra and hyperbolic functions, to linear algebra and group theory.

This article provides a few of the easier ones to follow in the context of special relativity, for the simplest case of a Lorentz boost in standard configuration, i.e. two inertial frames moving relative to each other at constant (uniform) relative velocity less than the speed of light, and using Cartesian coordinates so that the x and x′ axes are collinear.

Lorentz transformation

In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

The prime examples of such four-vectors are the four-position and four-momentum of a particle, and for fields the electromagnetic tensor and stress–energy tensor. The fact that these objects transform according to the Lorentz transformation is what mathematically defines them as vectors and tensors; see tensor for a definition.

Given the components of the four-vectors or tensors in some frame, the "transformation rule" allows one to determine the altered components of the same four-vectors or tensors in another frame, which could be boosted or accelerated, relative to the original frame. A "boost" should not be conflated with spatial translation, rather it's characterized by the relative velocity between frames. The transformation rule itself depends on the relative motion of the frames. In the simplest case of two inertial frames the relative velocity between enters the transformation rule. For rotating reference frames or general non-inertial reference frames, more parameters are needed, including the relative velocity (magnitude and direction), the rotation axis and angle turned through.

Historical background

The usual treatment (e.g., Albert Einstein's original work) is based on the invariance of the speed of light. However, this is not necessarily the starting point: indeed (as is described, for example, in the second volume of the Course of Theoretical Physics by Landau and Lifshitz), what is really at stake is the locality of interactions: one supposes that the influence that one particle, say, exerts on another can not be transmitted instantaneously. Hence, there exists a theoretical maximal speed of information transmission which must be invariant, and it turns out that this speed coincides with the speed of light in vacuum. Newton had himself called the idea of action at a distance philosophically "absurd", and held that gravity had to be transmitted by some agent according to certain laws.[1]

Michelson and Morley in 1887 designed an experiment, employing an interferometer and a half-silvered mirror, that was accurate enough to detect aether flow. The mirror system reflected the light back into the interferometer. If there were an aether drift, it would produce a phase shift and a change in the interference that would be detected. However, no phase shift was ever found. The negative outcome of the Michelson–Morley experiment left the concept of aether (or its drift) undermined. There was consequent perplexity as to why light evidently behaves like a wave, without any detectable medium through which wave activity might propagate.

In a 1964 paper,[2] Erik Christopher Zeeman showed that the causality-preserving property, a condition that is weaker in a mathematical sense than the invariance of the speed of light, is enough to assure that the coordinate transformations are the Lorentz transformations. Norman Goldstein's paper shows a similar result using inertiality (the preservation of time-like lines) rather than causality.[3]

Physical principles

Einstein based his theory of special relativity on two fundamental postulates. First, all physical laws are the same for all inertial frames of reference, regardless of their relative state of motion; and second, the speed of light in free space is the same in all inertial frames of reference, again, regardless of the relative velocity of each reference frame. The Lorentz transformation is fundamentally a direct consequence of this second postulate.

The second postulate

Assume the second postulate of special relativity stating the constancy of the speed of light, independent of reference frame, and consider a collection of reference systems moving with respect to each other with constant velocity, i.e. inertial systems, each endowed with its own set of Cartesian coordinates labeling the points, i.e. events of spacetime. To express the invariance of the speed of light in mathematical form, fix two events in spacetime, to be recorded in each reference frame. Let the first event be the emission of a light signal, and the second event be it being absorbed.

Pick any reference frame in the collection. In its coordinates, the first event will be assigned coordinates , and the second . The spatial distance between emission and absorption is , but this is also the distance traveled by the signal. One may therefore set up the equation

Every other coordinate system will record, in its own coordinates, the same equation. This is the immediate mathematical consequence of the invariance of the speed of light. The quantity on the left is called the spacetime interval. The interval is, for events separated by light signals, the same (zero) in all reference frames, and is therefore called invariant.

Invariance of interval

For the Lorentz transformation to have the physical significance realized by nature, it is crucial that the interval is an invariant measure for any two events, not just for those separated by light signals. To establish this, one considers an infinitesimal interval,[4]

as recorded in a system . Let be another system assigning the interval to the same two infinitesimally separated events. Since if , then the interval will also be zero in any other system (second postulate), and since and are infinitesimals of the same order, they must be proportional to each other,

On what may depend? It may not depend on the positions of the two events in spacetime, because that would violate the postulated homogeneity of spacetime. It might depend on the relative velocity between and , but only on the speed, not on the direction, because the latter would violate the isotropy of space.

Now bring in systems and ,







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk