Topologický priestor - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Topologický priestor
Štyri príklady topologických priestorov na množine {1,2,3} a dva príklady štruktúr na tejto množine, ktoré nie sú topologické priestory. Príklad znázornený vľavo dole nie je topologický priestor, pretože v systéme podmnožín sú síce množiny {2} a {3}, ale ich zjednotenie {2,3} chýba. Príklad vpravo dole nie je topologický priestor, pretože chýba množina {2}, ktorá je prienikom množín {1,2} a {2,3}.

Topologický priestor je matematická štruktúra, ktorá umožňuje formalizovať a zovšeobecniť koncepty ako konvergencia, spojitosť, či kompaktnosť. Tieto sú definované na základe vzťahov medzi množinami[1], na rozdiel od metrických priestorov, kde sa definujú pomocou vzdialenosti. Topologické priestory sa ako formalizácia vyskytujú takmer vo všetkých oblastiach matematiky. Sú predmetom štúdia topológie.

Definícia

Klasická definícia

Topologický priestor je usporiadaná dvojica , kde X je množina a , ktorej prvky sa nazývajú aj otvorené množiny[2], je množina podmnožín X, pre ktorú sú splnené nasledujúce tri podmienky:

  1. Prázdna množina a množina X sú otvorené, teda
  2. Zjednotenie ľubovoľného počtu otvorených množín je otvorená množina, teda pre každé :
  3. Prienik každých dvoch otvorených množín je otvorená množina, teda

Tretia podmienka je ekvivalentná s podmienkou, ktorá hovorí, že prienik ľubovoľného konečného počtu otvorených množín je otvorená množina.

Množina sa nazýva aj topológia na množine X, toto pomenovanie má však odlišný význam ako názov topológia v zmysle vedy o topologických priestoroch. Prvky množiny X sa zvyčajne nazývajú body, podmnožiny X patriace do sa nazývajú otvorené množiny, každý komplement otvorenej množiny sa nazýva uzavretá množina.

Je dôležité si uvedomiť, že množina uzavretých množín v X nie je to isté ako . Množina totiž môže byť otvorená aj uzavretá súčasne. Takýmito množinami sú napríklad alebo X, keďže sú komplementárne (pracuje sa s univerzom X) a zároveň otvorené (z definície topologického priestoru).

Definícia pomocou uzavretých množín

Použitím de Morganových zákonov je možné jednoduchým spôsobom odvodiť ekvivalentnú definíciu topologického priestoru, ktorá namiesto podmienok na otvorené množiny kladie podmienky na uzavreté množiny. Teda je možné povedať, že topologický priestor je usporiadaná dvojica , kde X, , otvorené a uzavreté množiny sú definované rovnako ako vyššie, a kde platí:

  1. Prázdna množina aj množina X sú uzavreté.
  2. Zjednotenie ľubovoľných dvoch uzavretých množín je uzavretá množina.
  3. Prienik ľubovoľného počtu uzavretých množín je uzavretá množina.

Definícia pomocou Kuratowského axióm uzavretosti

Inou možnosťou definície topologického priestoru (ktorá je však ekvivalentná s klasickou definíciou) je definícia topologickej štruktúry pomocou sady axióm, s ktorou prišiel poľský matematik Kazimierz Kuratowski. Podľa tejto definície je topologický priestor usporiadaná dvojica , kde X je množina a

je operátor uzáveru, pre ktorý sú splnené nasledujúce podmienky (Kuratowského axiómy):

  1. Uzáver danej množiny A musí obsahovať celú množinu A, teda:
  2. Uzáver je idempotentný, teda platí
  3. Uzáver zjednotenia je zjednotenie uzáverov, čiže:
  4. Prázdna množina je sama o sebe uzavretá, čiže:

Definícia pomocou axióm susednosti

Ďalšou ekvivalentnou definíciou topologického priestoru, s ktorou prišiel Felix Hausdorff[3], je jeho definícia pomocou tzv. axióm susednosti. Podľa tejto definície je topologický priestor usporiadaná dvojica , kde X je množina a je trieda množín , kde každé je množina podmnožín X nazývaných okolie bodu , pričom platia nasledujúce podmienky (axiómy susednosti):

  1. Každé okolie bodu x obsahuje bod x a X je okolím každého bodu x, teda:
  2. Ak nejaká množina obsahuje okolie bodu x, potom je sama okolím bodu x. Teda,
  3. Prienik ľubovoľných dvoch okolí bodu x je okolie bodu x:
Zdroj: Wikipedia.org - čítajte viac o Topologický priestor





Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk