Total least squares - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Total least squares
 ...
The bivariate (Deming regression) case of total least squares. The red lines show the error in both x and y. This is different from the traditional least squares method which measures error parallel to the y axis. The case shown, with deviations measured perpendicularly, arises when errors in x and y have equal variances.

In applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models.

The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix.[1]

Linear model

Background

In the least squares method of data modeling, the objective function, S,

is minimized, where r is the vector of residuals and W is a weighting matrix. In linear least squares the model contains equations which are linear in the parameters appearing in the parameter vector , so the residuals are given by

There are m observations in y and n parameters in β with m>n. X is a m×n matrix whose elements are either constants or functions of the independent variables, x. The weight matrix W is, ideally, the inverse of the variance-covariance matrix of the observations y. The independent variables are assumed to be error-free. The parameter estimates are found by setting the gradient equations to zero, which results in the normal equations [note 1]

Allowing observation errors in all variables

Now, suppose that both x and y are observed subject to error, with variance-covariance matrices and respectively. In this case the objective function can be written as

where and are the residuals in x and y respectively. Clearly[further explanation needed] these residuals cannot be independent of each other, but they must be constrained by some kind of relationship. Writing the model function as , the constraints are expressed by m condition equations.[2]

Thus, the problem is to minimize the objective function subject to the m constraints. It is solved by the use of Lagrange multipliers. After some algebraic manipulations,[3] the result is obtained.

or alternatively where M is the variance-covariance matrix relative to both independent and dependent variables.

Example

When the data errors are uncorrelated, all matrices M and W are diagonal. Then, take the example of straight line fitting.

in this case

showing how the variance at the ith point is determined by the variances of both independent and dependent variables and by the model being used to fit the data. The expression may be generalized by noting that the parameter is the slope of the line.







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk