Spinors - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Spinors
 ...
A spinor visualized as a vector pointing along the Möbius band, exhibiting a sign inversion when the circle (the "physical system") is continuously rotated through a full turn of 360°.[a]

In geometry and physics, spinors (/spɪnər/) are elements of a complex number-based vector space that can be associated with Euclidean space.[b] A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation,[c] but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360° (see picture). It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors (although this is inaccurate and may be misleading; they are better viewed as "square roots" of sections of vector bundles – in the case of the exterior algebra bundle of the cotangent bundle, they thus become "square roots" of differential forms).

It is also possible to associate a substantially similar notion of spinor to Minkowski space, in which case the Lorentz transformations of special relativity play the role of rotations. Spinors were introduced in geometry by Élie Cartan in 1913.[1][d] In the 1920s physicists discovered that spinors are essential to describe the intrinsic angular momentum, or "spin", of the electron and other subatomic particles.[e]

Spinors are characterized by the specific way in which they behave under rotations. They change in different ways depending not just on the overall final rotation, but the details of how that rotation was achieved (by a continuous path in the rotation group). There are two topologically distinguishable classes (homotopy classes) of paths through rotations that result in the same overall rotation, as illustrated by the belt trick puzzle. These two inequivalent classes yield spinor transformations of opposite sign. The spin group is the group of all rotations keeping track of the class.[f] It doubly covers the rotation group, since each rotation can be obtained in two inequivalent ways as the endpoint of a path. The space of spinors by definition is equipped with a (complex) linear representation of the spin group, meaning that elements of the spin group act as linear transformations on the space of spinors, in a way that genuinely depends on the homotopy class.[g] In mathematical terms, spinors are described by a double-valued projective representation of the rotation group SO(3).

Although spinors can be defined purely as elements of a representation space of the spin group (or its Lie algebra of infinitesimal rotations), they are typically defined as elements of a vector space that carries a linear representation of the Clifford algebra. The Clifford algebra is an associative algebra that can be constructed from Euclidean space and its inner product in a basis-independent way. Both the spin group and its Lie algebra are embedded inside the Clifford algebra in a natural way, and in applications the Clifford algebra is often the easiest to work with.[h] A Clifford space operates on a spinor space, and the elements of a spinor space are spinors.[3] After choosing an orthonormal basis of Euclidean space, a representation of the Clifford algebra is generated by gamma matrices, matrices that satisfy a set of canonical anti-commutation relations. The spinors are the column vectors on which these matrices act. In three Euclidean dimensions, for instance, the Pauli spin matrices are a set of gamma matrices,[i] and the two-component complex column vectors on which these matrices act are spinors. However, the particular matrix representation of the Clifford algebra, hence what precisely constitutes a "column vector" (or spinor), involves the choice of basis and gamma matrices in an essential way. As a representation of the spin group, this realization of spinors as (complex[j]) column vectors will either be irreducible if the dimension is odd, or it will decompose into a pair of so-called "half-spin" or Weyl representations if the dimension is even.[k]

Introduction

A gradual rotation can be visualized as a ribbon in space.[l] Two gradual rotations with different classes, one through 360° and one through 720° are illustrated here in the belt trick puzzle. A solution of the puzzle is a continuous manipulation of the belt, fixing the endpoints, that untwists it. This is impossible with the 360° rotation, but possible with the 720° rotation. A solution, shown in the second animation, gives an explicit homotopy in the rotation group between the 720° rotation and the 0° identity rotation.
An object attached to belts or strings can spin continuously without becoming tangled. Notice that after the cube completes a 360° rotation, the spiral is reversed from its initial configuration. The belts return to their original configuration after spinning a full 720°.
A more extreme example demonstrating that this works with any number of strings. In the limit, a piece of solid continuous space can rotate in place like this without tearing or intersecting itself

What characterizes spinors and distinguishes them from geometric vectors and other tensors is subtle. Consider applying a rotation to the coordinates of a system. No object in the system itself has moved, only the coordinates have, so there will always be a compensating change in those coordinate values when applied to any object of the system. Geometrical vectors, for example, have components that will undergo the same rotation as the coordinates. More broadly, any tensor associated with the system (for instance, the stress of some medium) also has coordinate descriptions that adjust to compensate for changes to the coordinate system itself.

Spinors do not appear at this level of the description of a physical system, when one is concerned only with the properties of a single isolated rotation of the coordinates. Rather, spinors appear when we imagine that instead of a single rotation, the coordinate system is gradually (continuously) rotated between some initial and final configuration. For any of the familiar and intuitive ("tensorial") quantities associated with the system, the transformation law does not depend on the precise details of how the coordinates arrived at their final configuration. Spinors, on the other hand, are constructed in such a way that makes them sensitive to how the gradual rotation of the coordinates arrived there: They exhibit path-dependence. It turns out that, for any final configuration of the coordinates, there are actually two ("topologically") inequivalent gradual (continuous) rotations of the coordinate system that result in this same configuration. This ambiguity is called the homotopy class of the gradual rotation. The belt trick (shown, in which both ends of the rotated object are physically tethered to an external reference) demonstrates two different rotations, one through an angle of 2π and the other through an angle of 4π, having the same final configurations but different classes. Spinors actually exhibit a sign-reversal that genuinely depends on this homotopy class. This distinguishes them from vectors and other tensors, none of which can feel the class.

Spinors can be exhibited as concrete objects using a choice of Cartesian coordinates. In three Euclidean dimensions, for instance, spinors can be constructed by making a choice of Pauli spin matrices corresponding to (angular momenta about) the three coordinate axes. These are 2×2 matrices with complex entries, and the two-component complex column vectors on which these matrices act by matrix multiplication are the spinors. In this case, the spin group is isomorphic to the group of 2×2 unitary matrices with determinant one, which naturally sits inside the matrix algebra. This group acts by conjugation on the real vector space spanned by the Pauli matrices themselves,[m] realizing it as a group of rotations among them,[n] but it also acts on the column vectors (that is, the spinors).

More generally, a Clifford algebra can be constructed from any vector space V equipped with a (nondegenerate) quadratic form, such as Euclidean space with its standard dot product or Minkowski space with its standard Lorentz metric. The space of spinors is the space of column vectors with components. The orthogonal Lie algebra (i.e., the infinitesimal "rotations") and the spin group associated to the quadratic form are both (canonically) contained in the Clifford algebra, so every Clifford algebra representation also defines a representation of the Lie algebra and the spin group.[o] Depending on the dimension and metric signature, this realization of spinors as column vectors may be irreducible or it may decompose into a pair of so-called "half-spin" or Weyl representations.[p] When the vector space V is four-dimensional, the algebra is described by the gamma matrices.

Mathematical definition

The space of spinors is formally defined as the fundamental representation of the Clifford algebra. (This may or may not decompose into irreducible representations.) The space of spinors may also be defined as a spin representation of the orthogonal Lie algebra. These spin representations are also characterized as the finite-dimensional projective representations of the special orthogonal group that do not factor through linear representations. Equivalently, a spinor is an element of a finite-dimensional group representation of the spin group on which the center acts non-trivially.

Overview

There are essentially two frameworks for viewing the notion of a spinor: the representation theoretic point of view and the geometric point of view.

Representation theoretic point of view

From a representation theoretic point of view, one knows beforehand that there are some representations of the Lie algebra of the orthogonal group that cannot be formed by the usual tensor constructions. These missing representations are then labeled the spin representations, and their constituents spinors. From this view, a spinor must belong to a representation of the double cover of the rotation group SO(n,), or more generally of a double cover of the generalized special orthogonal group SO+(p, q, ) on spaces with a metric signature of (p, q). These double covers are Lie groups, called the spin groups Spin(n) or Spin(p, q). All the properties of spinors, and their applications and derived objects, are manifested first in the spin group. Representations of the double covers of these groups yield double-valued projective representations of the groups themselves. (This means that the action of a particular rotation on vectors in the quantum Hilbert space is only defined up to a sign.)

In summary, given a representation specified by the data where is a vector space over or and is a homomorphism , a spinor is an element of the vector space .

Geometric point of view

From a geometrical point of view, one can explicitly construct the spinors and then examine how they behave under the action of the relevant Lie groups. This latter approach has the advantage of providing a concrete and elementary description of what a spinor is. However, such a description becomes unwieldy when complicated properties of the spinors, such as Fierz identities, are needed.

Clifford algebras

The language of Clifford algebras[5] (sometimes called geometric algebras) provides a complete picture of the spin representations of all the spin groups, and the various relationships between those representations, via the classification of Clifford algebras. It largely removes the need for ad hoc constructions.

In detail, let V be a finite-dimensional complex vector space with nondegenerate symmetric bilinear form g. The Clifford algebra Cℓ(V, g) is the algebra generated by V along with the anticommutation relation xy + yx = 2g(x, y). It is an abstract version of the algebra generated by the gamma or Pauli matrices. If V = , with the standard form g(x, y) = xTy = x1y1 + ... + xnyn we denote the Clifford algebra by Cℓn(). Since by the choice of an orthonormal basis every complex vectorspace with non-degenerate form is isomorphic to this standard example, this notation is abused more generally if dim(V) = n. If n = 2k is even, Cℓn() is isomorphic as an algebra (in a non-unique way) to the algebra Mat(2k, ) of 2k × 2k complex matrices (by the Artin–Wedderburn theorem and the easy to prove fact that the Clifford algebra is central simple). If n = 2k + 1 is odd, Cℓ2k+1() is isomorphic to the algebra Mat(2k, ) ⊕ Mat(2k, ) of two copies of the 2k × 2k complex matrices. Therefore, in either case Cℓ(V, g) has a unique (up to isomorphism) irreducible representation (also called simple Clifford module), commonly denoted by Δ, of dimension 2. Since the Lie algebra so(V, g) is embedded as a Lie subalgebra in Cℓ(V, g) equipped with the Clifford algebra commutator as Lie bracket, the space Δ is also a Lie algebra representation of so(V, g) called a spin representation. If n is odd, this Lie algebra representation is irreducible. If n is even, it splits further[clarification needed] into two irreducible representations Δ = Δ+ ⊕ Δ called the Weyl or half-spin representations.

Irreducible representations over the reals in the case when V is a real vector space are much more intricate, and the reader is referred to the Clifford algebra article for more details.

Spin groups

The spin representation Δ is a vector space equipped with a representation of the spin group that does not factor through a representation of the (special) orthogonal group. The vertical arrows depict a short exact sequence.

Spinors form a vector space, usually over the complex numbers, equipped with a linear group representation of the spin group that does not factor through a representation of the group of rotations (see diagram). The spin group is the group of rotations keeping track of the homotopy class. Spinors are needed to encode basic information about the topology of the group of rotations because that group is not simply connected, but the simply connected spin group is its double cover. So for every rotation there are two elements of the spin group that represent it. Geometric vectors and other tensors cannot feel the difference between these two elements, but they produce opposite signs when they affect any spinor under the representation. Thinking of the elements of the spin group as homotopy classes of one-parameter families of rotations, each rotation is represented by two distinct homotopy classes of paths to the identity. If a one-parameter family of rotations is visualized as a ribbon in space, with the arc length parameter of that ribbon being the parameter (its tangent, normal, binormal frame actually gives the rotation), then these two distinct homotopy classes are visualized in the two states of the belt trick puzzle (above). The space of spinors is an auxiliary vector space that can be constructed explicitly in coordinates, but ultimately only exists up to isomorphism in that there is no "natural" construction of them that does not rely on arbitrary choices such as coordinate systems. A notion of spinors can be associated, as such an auxiliary mathematical object, with any vector space equipped with a quadratic form such as Euclidean space with its standard dot product, or Minkowski space with its Lorentz metric. In the latter case, the "rotations" include the Lorentz boosts, but otherwise the theory is substantially similar.[citation needed]

Spinor fields in physics

The constructions given above, in terms of Clifford algebra or representation theory, can be thought of as defining spinors as geometric objects in zero-dimensional space-time. To obtain the spinors of physics, such as the Dirac spinor, one extends the construction to obtain a spin structure on 4-dimensional space-time (Minkowski space). Effectively, one starts with the tangent manifold of space-time, each point of which is a 4-dimensional vector space with SO(3,1) symmetry, and then builds the spin group at each point. The neighborhoods of points are endowed with concepts of smoothness and differentiability: the standard construction is one of a fiber bundle, the fibers of which are affine spaces transforming under the spin group. After constructing the fiber bundle, one may then consider differential equations, such as the Dirac equation, or the Weyl equation on the fiber bundle. These equations (Dirac or Weyl) have solutions that are plane waves, having symmetries characteristic of the fibers, i.e. having the symmetries of spinors, as obtained from the (zero-dimensional) Clifford algebra/spin representation theory described above. Such plane-wave solutions (or other solutions) of the differential equations can then properly be called fermions; fermions have the algebraic qualities of spinors. By general convention, the terms "fermion" and "spinor" are often used interchangeably in physics, as synonyms of one-another.[citation needed]

It appears that all fundamental particles in nature that are spin-1/2 are described by the Dirac equation, with the possible exception of the neutrino. There does not seem to be any a priori reason why this would be the case. A perfectly valid choice for spinors would be the non-complexified version of Cℓ2,2(), the Majorana spinor.[6] There also does not seem to be any particular prohibition to having Weyl spinors appear in nature as fundamental particles.

The Dirac, Weyl, and Majorana spinors are interrelated, and their relation can be elucidated on the basis of real geometric algebra.[7] Dirac and Weyl spinors are complex representations while Majorana spinors are real representations.

Weyl spinors are insufficient to describe massive particles, such as electrons, since the Weyl plane-wave solutions necessarily travel at the speed of light; for massive particles, the Dirac equation is needed. The initial construction of the Standard Model of particle physics starts with both the electron and the neutrino as massless Weyl spinors; the Higgs mechanism gives electrons a mass; the classical neutrino remained massless, and was thus an example of a Weyl spinor.[q] However, because of observed neutrino oscillation, it is now believed that they are not Weyl spinors, but perhaps instead Majorana spinors.[8] It is not known whether Weyl spinor fundamental particles exist in nature.

The situation for condensed matter physics is different: one can construct two and three-dimensional "spacetimes" in a large variety of different physical materials, ranging from semiconductors to far more exotic materials. In 2015, an international team led by Princeton University scientists announced that they had found a quasiparticle that behaves as a Weyl fermion.[9]

Spinors in representation theory

One major mathematical application of the construction of spinors is to make possible the explicit construction of linear representations of the Lie algebras of the special orthogonal groups, and consequently spinor representations of the groups themselves. At a more profound level, spinors have been found to be at the heart of approaches to the Atiyah–Singer index theorem, and to provide constructions in particular for discrete series representations of semisimple groups.

The spin representations of the special orthogonal Lie algebras are distinguished from the tensor representations given by Weyl's construction by the weights. Whereas the weights of the tensor representations are integer linear combinations of the roots of the Lie algebra, those of the spin representations are half-integer linear combinations thereof. Explicit details can be found in the spin representation article.

Attempts at intuitive understanding

The spinor can be described, in simple terms, as "vectors of a space the transformations of which are related in a particular way to rotations in physical space".[10] Stated differently:

Spinors ... provide a linear representation of the group of rotations in a space with any number of dimensions, each spinor having components where or .[2]

Several ways of illustrating everyday analogies have been formulated in terms of the plate trick, tangloids and other examples of orientation entanglement.

Nonetheless, the concept is generally considered notoriously difficult to understand, as illustrated by Michael Atiyah's statement that is recounted by Dirac's biographer Graham Farmelo:

No one fully understands spinors. Their algebra is formally understood but their general significance is mysterious. In some sense they describe the "square root" of geometry and, just as understanding the square root of −1 took centuries, the same might be true of spinors.[11]

History

The most general mathematical form of spinors was discovered by Élie Cartan in 1913.[12] The word "spinor" was coined by Paul Ehrenfest in his work on quantum physics.[13]

Spinors were first applied to mathematical physics by Wolfgang Pauli in 1927, when he introduced his spin matrices.[14] The following year, Paul Dirac discovered the fully relativistic theory of electron spin by showing the connection between spinors and the Lorentz group.[15] By the 1930s, Dirac, Piet Hein and others at the Niels Bohr Institute (then known as the Institute for Theoretical Physics of the University of Copenhagen) created toys such as Tangloids to teach and model the calculus of spinors.

Spinor spaces were represented as left ideals of a matrix algebra in 1930, by Gustave Juvett[16] and by Fritz Sauter.[17][18] More specifically, instead of representing spinors as complex-valued 2D column vectors as Pauli had done, they represented them as complex-valued 2 × 2 matrices in which only the elements of the left column are non-zero. In this manner the spinor space became a minimal left ideal in Mat(2, ).[r][20]

In 1947 Marcel Riesz constructed spinor spaces as elements of a minimal left ideal of Clifford algebras. In 1966/1967, David Hestenes[21][22] replaced spinor spaces by the even subalgebra Cℓ01,3() of the spacetime algebra Cℓ1,3().[18][20] As of the 1980s, the theoretical physics group at Birkbeck College around David Bohm and Basil Hiley has been developing algebraic approaches to quantum theory that build on Sauter and Riesz' identification of spinors with minimal left ideals.

Examples

Some simple examples of spinors in low dimensions arise from considering the even-graded subalgebras of the Clifford algebra Cℓp, q(). This is an algebra built up from an orthonormal basis of n = p + q mutually orthogonal vectors under addition and multiplication, p of which have norm +1 and q of which have norm −1, with the product rule for the basis vectors

Two dimensions

The Clifford algebra Cℓ2,0() is built up from a basis of one unit scalar, 1, two orthogonal unit vectors, σ1 and σ2, and one unit pseudoscalar i = σ1σ2. From the definitions above, it is evident that (σ1)2 = (σ2)2 = 1, and (σ1σ2)(σ1σ2) = −σ1σ1σ2σ2 = −1.

The even subalgebra Cℓ02,0(), spanned by even-graded basis elements of Cℓ2,0(), determines the space of spinors via its representations. It is made up of real linear combinations of 1 and σ1σ2. As a real algebra, Cℓ02,0() is isomorphic to the field of complex numbers








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk