Tarski's axiomatization of the reals - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Tarski's axiomatization of the reals
 ...

In 1936, Alfred Tarski gave an axiomatization of the real numbers and their arithmetic, consisting of only the eight axioms shown below and a mere four primitive notions:[1] the set of reals denoted R, a binary relation over R, denoted by infix <, a binary operation of addition over R, denoted by infix +, and the constant 1.

Tarski's axiomatization, which is a second-order theory, can be seen as a version of the more usual definition of real numbers as the unique Dedekind-complete ordered field; it is however made much more concise by avoiding multiplication altogether and using unorthodox variants of standard algebraic axioms and other subtle tricks. Tarski did not supply a proof that his axioms are sufficient or a definition for the multiplication of real numbers in his system.

Tarski also studied the first-order theory of the structure (R, +, ·, <), leading to a set of axioms for this theory and to the concept of real closed fields.

The axioms

Axioms of order (primitives: R, <)

Axiom 1
If x < y, then not y < x.
Axiom 2
If x < z, there exists a y such that x < y and y < z.
Axiom 3
For all subsets XY ⊆ R, if for all x ∈ X and y ∈ Y, x < y, then there exists a z such that for all x ∈ X and y ∈ Y, if x ≠ z and y ≠ z, then x < z and z < y.

Axioms of addition (primitives: R, <, +)

Axiom 4
x + (y + z) = (x + z) + y.
Axiom 5
For all x, y, there exists a z such that x + z = y.
Axiom 6
If x + y < z + w, then x < z or y < w.

Axioms for 1 (primitives: R, <, +, 1)

Axiom 7
1 ∈ R.
Axiom 8
1 < 1 + 1.

Discussion

Tarski stated, without proof, that these axioms turn the relation < into a total ordering. The missing component was supplied in 2008 by Stefanie Ucsnay.[2]

The axioms then imply that R is a linearly ordered abelian group under addition with distinguished positive element 1, and that this group is Dedekind-complete, divisible, and Archimedean.

Tarski never proved that these axioms and primitives imply the existence of a binary operation called multiplication that has the expected properties, so that R becomes a complete ordered field under addition and multiplication. It is possible to define this multiplication operation by considering certain order-preserving homomorphisms of the ordered group (R,+,<).[3]

References

  1. ^ Tarski, Alfred (24 March 1994). Introduction to Logic and to the Methodology of Deductive Sciences (4 ed.). Oxford University Press. ISBN 978-0-19-504472-0.
  2. ^ Ucsnay, Stefanie (Jan 2008). "A Note on Tarski's Note". The American Mathematical Monthly. 115 (1): 66–68. JSTOR 27642393.
  3. ^ Arthan, Rob D. (2001). "An Irrational Construction of ℝ from ℤ" (PDF). Theorem Proving in Higher Order Logics. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer: 43–58. doi:10.1007/3-540-44755-5_5. Section 4
Zdroj:https://en.wikipedia.org?pojem=Tarski's_axiomatization_of_the_reals
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk