Sopečná erupce - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Sopečná erupce
 ...
Sopečná erupce surtseyského typu během formování ostrova Surtsey nedaleko Islandu v roce 1963.

Sopečná erupce je geologická vulkanická událost, během které dochází k výronu magmatu na povrch tělesa. Je vyvolávána tlakem sopečných plynů uvolňujících se z magmatu během výstupu. Erupce nastane, pokud celkový tlak uvolněných sopečných plynů dosáhne meze, kdy je jimi generované tlakové napětí schopné prorazit nadložní vrstvy. Během erupce je pak magma vyvrhováno pod tlakem na povrch, přičemž se do atmosféry uvolní sopečné plyny.[1]

Během sopečné erupce může být vyvrhováno různé množství materiálu v závislosti na podmínkách v magmatickém krbu a jeho velikosti. Viskozita magmatu a prostředí, kde k erupci dochází, následně ovlivňuje typ sopečné erupce a její průběh. Při silných explozivních erupcí může být do vyšších vrstev atmosféry vyvrženo velké množství sopečného materiálu, jenž je schopno ovlivnit globální klimatické podmínky.[2]

Rozdělení sopečných erupcí

Podle charakteru

Explozivní erupce.
Výlevná erupce.
  • Výbušná (explozivní) – je bouřlivá erupce, která do okolí prudce vyvrhuje sopečný materiál. Její výbušnost je způsobena velkým množství rozpuštěných plynů a viskózním (špatně tekutým) magmatem, zejména felsického či intermediálního složení (ryolit, dacit, andezit). Rozpuštěné plyny vlivem této vlastnosti nemohou volně uniknout a v tavenině je tak mimořádný tlak. Značný rozdíl vůči mnohem menšímu atmosférickému tlaku, během výstupu na povrch, má za následek výbušné uvolnění těchto plynů. Při uvolnění energie je do okolí vyvrhován sopečný materiál v podobě kusů lávy a pyroklastik. Za tyto erupce jsou zodpovědné hlavně vulkány na konvergentním rozhraní (subdukční zóny) tektonických desek. V minulosti způsobily mohutné explozivní erupce řadu tragických katastrof.

Podle mechanismu

Freatomagmatická erupce maaru.
Freatická erupce (v popředí).
  • magmatické – jsou erupce bez účasti vody, které pohání především expanze plynné složky v magmatu, v důsledku klesajícího okolního litostatického tlaku. Nízko viskózní magmata s malým množstvím rozpuštěných plynů produkují relativně klidné efuzivní erupce (např. havajské a islandské). Vysoce viskózní magmata s vysokým obsahem rozpuštěného plynu naopak produkují prudké explozivní erupce (vulkánské, peléjské, pliniovské atd.).[3]
  • hydrovulkanické – hydrovulkanické erupce jsou erupce, kdy se magma dostává do přímého nebo nepřímého kontaktu s vodou. Dělí se na dva typy:
    • Freatomagmatické – vznikají přímým kontaktem magmatu s vodou. Velký teplotní rozdíl mezi těmito dvěma látkami vede k přemění vody v páru, jejíž expanze (pára má 1 700× větší objem než voda)[4] rapidně zvyšuje tlak a tím explozivitu a sílu erupce. To má za následek vyšší míru fragmentace magmatu. Tím vznikají oblaka popela, jehož zrna mají menší frakci než u magmatických erupcí. Ke freatomagmatickým erupcím patří i několik typů erupcí: surtseyské, podmořské a subglaciální.[5]
    • Freatické – jsou výbuchy horké páry. Oproti magmatickým a freatomagmatickým mají mnohem nižší intenzitu. Nastávají tehdy, když teplo z nedaleko umístěného magmatu zahřeje podzemní nebo povrchovou vodu. Vzniklá expandující pára rapidně zvýší tlak, což vede k explozivní erupci. Ta kromě páry může také vyvrhovat sopečný popel a vystřelovat sopečné bomby. Ty ovšem tvoří nejuvenilní materiál, který nemá původ v magmatu, jenž erupci vyvolalo, nýbrž se jedná o kusy nadložní vrstvy či dna sopečného kráteru. Freatické erupce se vyznačují svou nepředvídatelností, což bylo například příčinou tragédie na novozélandském ostrově Whakaari roku 2019, kde zemřelo 21 turistů. Další neštěstí se odehrálo 27. září 2014 v Japonsku. Aniž by stratovulkán Ontake poskytl předčasné varování v podobě otřesů, došlo k jeho náhlé freatické erupci. Bylo zabito 63 turistů, kteří v tu dobu horu zdolávali.[6][7]

Podle umístění

  • centrální – jsou erupce, při nichž je magma přiváděno k povrchu hlavním sopouchem.
  • lineární – magma proniká na povrch prostřednictvím trhlin podél zlomů. Tento typ erupcí se předpokládá jak u kontinentální, tak u oceánské kůry. Soustředí se převážně na horké skvrny a divergentní rozhraní tektonických desek.
  • arenální – je sopečná činnost, jež není soustředěna delší dobu na jednom místě, ale postupně mění polohu. Vulkanismus sopek, které jsou součástí takové činnosti, je převážně krátkodobý. Někdy jsou vulkány tohoto typu rozmístěny v jedné linii, ale mohou se nacházet i v nepravidelných skupinách, které mají společný původ.[8][9]

Typy erupcí

Havajská

Havajská erupce: 1. oblak plynů, 2. lávová fontána, 3. kráter, 4. lávové jezero, 5. fumaroly, 6. lávový proud, 7. vrstvy lávy a popela, 8. stratum, 9. sill, 10. přívod magmatu, 11. magmatický krb, 12. dajka

Havajský typ erupce je nejklidnější a nejběžnějším typem sopečné erupce. Jedná se o efuzivní (výlevný) vulkanismus málo viskózních (dobře tekoucích) láv, většinou čedičové složení, s nízkým obsahem rozpuštěných plynů a vysokou teplotou překračující 1000 °C. Byl pojmenován podle sopek na ostrově Havaj. Tyto erupce nejsou explozivní, nedochází při nich k emitování oblak sopečného popela a jsou typické pro štítové vulkány. Sopečná aktivita nemusí být soustředěna pouze na centrální sopečný kráter, roztavená hornina může naopak proudit z radiálně umístěných trhlin na svazích.[10] Občas se mohou objevit i lávové fontány. Ačkoliv havajský typ patří mezi nejméně nebezpečné erupce, vzniklé lávové proudy jsou schopné urazit velké vzdálenosti, ohrozit zastavené oblasti a někdy si i vyžádat ztráty na lidských životech.[11][12]

Islandská

Islandský typ je výlev málo viskózní lávy z trhliny. Nápadně se podobá tomu havajskému, ale pocházejí z trhlin rovnoběžně orientované okolo divergentního rozhraní tektonických desek. Délka pukliny, z níž proudí roztavená hornina na povrch, může být dlouhá od několika set metrů po několik desítek kilometrů. Není neobvyklé, že se podél ní mohou zformovat tzv. spečené kužely. Lávové proudy nebo lávové příkrovy vyplňují níže položená místa a vytváří tak lávova pole. K obnovení sopečné činnosti nedochází na tomtéž místě, ale nová trhlina se otevře několik set metrů až kilometrů vedle. Islandské erupce většinou kumulativně nebudují žádný horský masiv. Pokud ano, jedná se o štítový vulkán podstatně menších rozměrů než protějšky vystavěné pomocí havajského typu. Nejznámější erupcí byla patrně ta, která nastala u sopky Laki v letech 17831784. Po dobu osmi měsíců prýštila láva z trhliny dlouhé 27 km. Na zemský povrch se ji vylilo zhruba 14,7 km³.[13][14]

Strombolská

Strombolská erupce: 1. oblak popela, 2. struska, 3. sopečný spad, 4. lávová fontána , 5. sopečná bomba, 6. lávový proud, 7. vrstvy lávy a popela, 8. stratum, 9. dajka, 10. přívod magmatu, 11. magmatický krb, 12. sill
Podrobnější informace naleznete v článku Strombolská erupce.

Strombolský typ jsou slabé explozivní erupce a představují jeden z nejlépe zdokumentovaných typů. Jsou charakteristické krátkodobými, rytmicky se opakujícími výbuchy expandujících plynů, chrlící do svého nejbližšího okolí kusy částečně utuhlé lávy. Interval mezi samotnými pulzy může být v řádu vteřin nebo minut. Každý takový výbuch, doprovázený hlasitým zvukem, je způsobený prasknutím kapsy sopečných plynů, která k povrchu stoupá sopouchem a zároveň s sebou vytlačuje magma. Síla expandujících plynů magma fragmentuje na menší kusy, které jsou výtrysky chrleny maximálně do výšky několik set metrů. Během svého letu částečně utuhnou a jako sopečná struska se hromadí v okolí sopečného kráteru.[10] Jednotlivý výbuch může na zemský povrch dopravit 1–10 tun materiálu.[14] Kromě strusky jsou schopné taktéž produkovat malá oblaka sopečného popela (nepřekračující výšku 1 km) a vystřelovat sopečné bomby. Pro strombolské erupce jsou běžná málo viskózní magmata čedičového a čedičoandezitového složení. Typicky se vyskytují u sypaných kuželů a stratovulkánů na konvergentním rozhraní tektonických desek (subdukční zóny). Eruptivní epizoda může bez přestávky trvat hodiny nebo i dny. Může ji rovněž doprovázet lávová fontána. Konec epizody bývá někdy zakončován produkcí lávových proudů. Typ erupce byl pojmenován podle známého italského vulkánu Stromboli, který je nepřetržitě činný již 2400 let a proto ho starověcí Římané přezdívali „maják Středozemního moře“. Strombolské erupce jsou turisticky vyhledávané, zejména pro noční pozorování.[14][15]

Vulkánská

Vulkánská erupce: 1. oblak popela, 2. struska, 3. lávová fontána, 4. sopečný spad, 5. lávová bomba, 6. lávový proud, 7. vrstvy lávy a popela, 8. stratum, 9. sill, 10. přívod magmatu, 11. magmatický krb, 12. dajka

Vulkánské erupce jsou středně prudké explozivní erupce, produkující oblaka popela a zároveň do okolí vystřelují velké kusy hornin (tzv. lávové bomby). Souvisejí s přítomností velice viskózního magmatu, zejména čedičo-andezitového, andezitového, dacitového a ryolitového složení.[10] To obsahuje velké množství plynů, které vlivem viskozity nemohou z magmatu volně unikat. V jícnu sopky tak postupně narůstá tlak, až nakonec dojde k jeho náhlému uvolnění prostřednictvím prudkých explozí, které mohou být velmi hlasité.(Video ) Síla takového výbuchu je přímo úměrná množství nahromaděných plynů. Jednotlivé výbuchy vulkánských erupcí se rytmicky opakují, byť nepravidelně, přičemž délka intervalu se pohybuje od méně než jedné minuty až po jeden den. Oblaka sopečného popela obvykle dosahují výšek 1 až 2 km. Jenom výjimečně vyvržený materiál vystoupá do výšky přes 10 km (takové události mohou být mylně zaměňovány za subpliniovské). Lávové bomby, jejichž dráha je reprezentovaná balistickou křivkou, mohou dopadat na zemský povrch dokonce 5 km od sopečného kráteru. Explozivní charakter vulkánské aktivity je dále podporován předčasným tuhnutím viskózního magmatu přímo v jícnu sopky, čímž vzniká dočasná zátka, která je posléze zničena další explozí, jakmile tlak plynů překročí její pevnost. Výbuchy mohou být tak prudké, že vyvržené kusy hornin mohou překonat rychlost zvuku, což vede k vytvoření sonického třesku.(Video ) Vulkánské erupce byly pojmenované podle italské sopky Vulcano. Lze se s nimi setkat po celém světě, typické jsou například pro indonéskou Krakatoiu, japonskou Sakuradžimu nebo kostarickou Irazú. Vzhledem k produkci velkého množství lávových bomb s velkým dopadovým poloměrem je tento typ erupce poměrně nebezpečný. V některých případech je schopný vytvořit i malé pyroklastické proudy.[14][16]

Peléjská

Peléjská erupce: 1. oblak popela 2. sopečný spad, 3. lávový dóm, 4. lávová bomba, 5. pyroklastický proud, 6. vrstvy lávy a popela, 7. stratum, 8. přívod magmatu, 9. magmatický krb, 10. dajka.

Jsou explozivní erupce, jejichž hlavním rysem je produkce pyroklastických proudů, kvůli čemuž mohou být pro své okolí velmi destruktivní. Proudy nejčastěji vznikají kolapsem lávového dómu nebo lávové jehly.[17] Zhroucení je způsobeno buď jejich strukturální nestabilitou nebo tlakem přísunu nového magmatu. Opakování tvorby a kolapsu může přetrvávat několik let nebo i desetiletí (Santiaguito). Erupce jsou úzce vázány na vysoce viskózní felsické magma ryolitového, případně andezitového složení. Neprobíhají zcela samostatně, ale často doprovázejí erupce vulkánského nebo pliniovského typu. Poprvé byly popsány při erupci karibského vulkánu Mont Pelée, který svými pyroklastickými proudy zahubil 28 tisíc obyvatel. Peléjské erupce se rovněž objevily u Hibok-Hibok (19481951), Mayon (1984) či Soufrière (2021).[13][18][19]

Pliniovská

Pliniovská erupce: 1. erupční sloupec, 2. přívod magmatu, 3. sopečný spad, 4. vrstvy lávy a popela, 5. podložní nevulkanické vrstvy původních hornin, 6. magmatický krb.
Podrobnější informace naleznete v článku Pliniovská erupce.

Pliniovské erupce jsou extrémně explozivní erupce. V podstatě se jedná o nejničivější a energeticky nejmohutnější typ erupce. Délka jejich trvání se pohybuje v řádu hodin nebo několika dnů. Jsou velmi bohaté na plyny a na značně viskózní intermediální či felsická magmata dacitovéhoryolitového složení (čedičové je poměrně neobvyklé). Prvním charakteristickým znakem pliniovských erupcí je vysoký erupční sloupec, skládající se z velmi horké směsi plynů, popela a pemzy. Jeho výška mnohdy překračuje 30 km, výjimečně může penetrovat stratopauzu, proniknout až do mezosféry a dosáhnout výšky 55 km. V těchto výškách se jeho stoupání zastavuje a nastává horizontální šíření v závislosti na rychlosti a směru větru, čímž nabývá tvaru připomínající deštník. Zemský povrch pod tímto větrem hnaným sopečným mrakem je zasypáván pyroklastiky (sopečným popelem, struskou a kusy pemzy). Tento jev se označuje jako sopečný spad, přičemž tloušťka naakumulované vrstvy se zvyšuje se zmenšující se vzdáleností ke zdroji erupce. Stabilitu sloupce udržuje jeho vlastní silné konvekční proudění a rychlost stoupání činí 150–600 m/s. Během hlavní fáze je vulkán schopný chrlit milion až 100 milionů tun materiálu za vteřinu.[14] Jakmile dojde k oslabení konvekčního proudění ve sloupci, nastává jeho částečný nebo úplný gravitační kolaps.[20] Materiál, který ho tvořil má totiž vyšší hustotu než okolní vzduch, takže se velkou rychlosti de facto „rozleje“ po svazích dolů v podobě extrémně nebezpečných pyroklastických proudů nebo pyroklastických přívalů, společně označované zkratkou PDC (Pyroclastic density current).[21][17] Cyklus zformování sloupce a jeho zhroucení se může několikrát opakovat. Druhým charakteristickým znakem tohoto typu erupcí je velké množství vyvrženého materiálu. Nízkoenergetický druh, zvaný subplinovský, produkuje 0,1–1 km³ sopečného materiálu. Erupční sloupec obecně neproniká do stratosféry. Zároveň je vlivem slabé konvekce nestabilní a podstupuje opakované kolapsy a dochází tak k tvorbě nízkoobjemových PDC. Klasická pliniovská erupce zpravidla vyvrhne 1–10 km³. Oproti tomu ultrapliniovská erupce je schopná vyvrhnout více než 10 km³. Lze se rovněž setkat se speciálním termínem freatopliniovská erupce, pro kterou je typický velmi vysoký erupční sloupec.[22] Například při erupci tichomořské sopky Hunga Tongy 15. ledna 2022 dosáhl erupční sloupec výšky 58 km.[23][24] Třetí charakteristický znak pro pliniovské erupce je vznik kaldery. Při vyvržení více než několik km³ vulkanického materiálu dochází velmi často k propadu nadložních vrstev do částečně vyprázdněného magmatického krbu, což se na povrch projeví kolapsem a úplným zánikem původního sopečného tělesa a tudíž vzniku několik kilometrů široké kaldery. Obecně jsou pliniovské erupce oproti jiným typům erupcí poměrně vzácné. Mají značný potenciál ovlivnit globální klima.[14]

Typ erupce nese jméno po Pliniu mladším. Ten byl svědkem slavné erupce Vesuvu roku 79, jež zničila římská města Pompeje a Herculaneum. Ve svém dopise pro Tacita připodobnil erupční sloupec ke středomořské borovici.[25] Navíc chronologickým popisem jednotlivých fází erupce položil nejenom první základy vulkanologie, ale také pomohl současným vulkanologům pochopit průběh erupce a ověřit jejich stratigrafický průzkum sopečných uloženin kolem Vesuvu.[26]

Surtseyská

Surtseyská erupce: 1. oblak páry, 2. vyvrhovaný materiál, 3. sopečný kráter, 4. vodní plocha, 5. vrstvy lávy a popela, 6. dno vodní plochy, 7. sopouch, 8. magmatický krb, 9. dajka

Erupce surtseyského typu jsou druhem freatomagmatické erupce, kdy větší množství vody má volný přístup do sopečného jícnu. Bouřlivá interakce se žhavým magmatem má za následek zvýšení explozivity a jeho vysokou fragmentaci.[10] Dochází tak k prudké explozi v podobě černě zbarveného výtrysku, tvořeného popelem, kusy lávy, vody, páry a plyny, schopného dosáhnout výšky i 800 m, přičemž lávové bomby mohou být vystřeleny ještě výš a do větší vzdálenosti.[27] Ihned na to začne vypuzený materiál opět padat zpět dolů. U základny výtrysku se na všechny strany vyvalí rozpínající se pyroklastický příval typu base surge, turbulentní směs přehřátých plynů a popela.[20] Poprvé byly surtseyské erupce zdokumentovány v roce 1963, kdy sopečná činnost vytvořila nový ostrov poblíž jihozápadního pobřeží Islandu, posléze pojmenovaný jako Surtsey.[28]

Subglaciální

Subglaciální erupce: 1. oblak vodní páry, 2. kráterové jezero, 3. okolní led, 4. vrstvy lávy a sopečného popela, 5. podloží, 6. polštářová láva, 7. sopouch, 8. magmatický krb, 9. dajka

Subglaciální erupce probíhají u sopek, jež jsou z většiny nebo celé pokryté ledovcem či ledovým příkrovem. Během erupce dochází vlivem tepla k roztavení nadložního ledu. Pokud dojde ke kontaktu vody s magmatem, nastává bouřlivá reakce a erupce se stává freatomagmatickou. Zvýšená explozivita podporuje fragmetaci magmatu, čímž dochází k tvorbě hustých mračen sopečného popela. Množství roztáté vody může být natolik velké, že její masa může prorazit skrz ledovec a následně způsobit masivní povodně, na Islandu zvané jako jökulhlaupy.[29][30] Jejich průtok může být dosahovat tisíců někdy i sta tisíců m³/s, čímž se mohou dokonce vyrovnat průtoku řeky Amazonky.[31] Mezi známou subglaciální erupci patří erupce islandské Eyjafjallajökull v dubnu 2010. Kvůli mračnu popela se nad velkou částí Evropy musela na několik dní přerušit letecká doprava.[32]

Podmořská

Podmořská erupce: 1. oblak vodní páry, 2. okolní voda, 3. podloží dna, 4. lávový proud, 5. sopouch, 6. magmatický krb, 7. dajka, 8. polštářová láva

Zhruba 70–80 % veškeré vulkanické činnosti na Zemi probíhá na dně oceánů a moří. Většina podmořských erupcí je soustředěna na středooceánských hřbetech podél divergentních rozhraní. Zde se dvě tektonické desky od sebe oddalují, což podporuje výstup magmatu, který převážně efuzivní (výlevnou) činností formuje novou oceánskou kůru. Málo viskózní láva, převážně čedičového složení, zde vytváří tzv. polštařovou lávu. Majoritní část oceánské kůry je složená právě těmito „polštáři“. Podmořské vulkány mohou rovněž způsobovat erupce explozivního charakteru. Takové sopky se hojně nalézají na konvergentním rozhraní (subdukce) tektonických desek. Explozivita erupcí je však značně tlumena hydrostatickým tlakem vodního sloupce, kdy s každými 100 m hloubky naroste o 1 MPa. Čím vyšší je tlak, tím více je omezována expanze sopečných plynů, neboli výbušnost. Ačkoliv většina vulkanické činnosti na planetě probíhá pod hladinou moří a oceánů, tak je kvůli velmi špatné přístupnosti málo prozkoumaná. Navíc mnohé podmořské vulkány zůstávají z velké části dosud neobjeveny.[14]

Síla sopečných erupcí

K měření intenzity sopečné erupce je možné použít několik různých klasifikačních metod. Vhodným parametrem je množství vyvrženého sopečného materiálu. Dále přichází do úvahy i doba trvání erupce, výška erupčního oblaku/sloupce či vztah mezi velikostí emitovaných úlomků a jejich dosaženou vzdáleností od zdroje. Určit množství vyvržené hmoty na základě depozitů není jednoduché. Vrstvy mohou mít na malé ploše proměnou tloušťku, složitý vzor distribuce (daný tehdejší meteorologickou situací) a mohou se usazovat v různých prostředí (na souši nebo na dně vodních ploch). Postupem času degradují působením eroze. Obzvlášť citlivá jsou například špatně konsolidovaná ložiska tefry, což má posléze negativní vliv na stanovení objemu erupce. Další překážkou je i hustota různých sopečných materiálu a odlišný obsah pórů. Hustota u lávy činí 1800 až 2700 kg/m³. U čerstvě napadané tefry zhruba 400 až 600 kg/m³, zatímco po zkonsolidování 1 600 až 2000 kg/m³. Z těchto důvodů byl zaveden DRE (Dense-rock equivalent), kdy se hustota všech materiálů převádí na jednotnou hustotu mateřského magmatu bez vzduchových bublinek.[14] Erupce Pinatuba v roce 1991 vyvrhla 8,4 až 10,4 km³ lávy, popela a pyroklastického materiálu, ale po přepočítání vyšlo DRE na 3,7 až 5,3 km³.[33]

VEI

Index vulkanické aktivity VEI (Volcanic Explosivity Index), vyvinut roku 1982, je široce užívanou škálou pro klasifikaci sopečných erupcí na základě jejich velikosti a intenzity. Číselná stupnice (od VEI 0 do VEI 8) je logaritmická, což znamená, že s každým stupněm množství vyvržené množství hmoty vzrůstá 10×. S nejnižším a nejslabším indexem VEI 0 jsou spojeny neexplozivní erupce s nízkoobjemovými lávovými proudy. Indexem VEI 5 je ohodnocena například slavná erupce Vesuvu v roce 79, kdy pyroklastické přívaly a proudy zničily veškeré osídlení v okruhu 15 km.[34] Naopak výbuch Krakatoi roku 1883 měl již VEI 6. Poněkud netypická byla erupce islandské Laki v letech 17831784. Ačkoliv se jednalo taktéž stupeň VEI 6, tak nešlo o explozivní, nýbrž o masivní výlevnou erupci. Za posledních tisíc let nastaly pouze dvě erupce s indexem VEI 7. Sopečný výbuch Tambory v roce 1815 vyvrhnul 150 km³ pyroklastik a byl tak nejsilnější erupcí v moderních dějinách. Kvůli jejím silným účinkům na globální klima (sopečná zima) se následující rok 1816 označuje jako tzv. rok bez léta.[35] Za druhou událostí byla v roce 1257 zodpovědná sopka Samalas (dnes Rinjani) v Indonésii, která z roku 1258 taktéž učinila rok bez léta.[36] Civilizace zatím nezažila žádnou erupci o síle VEI 8, za níž jsou zodpovědné supervulkány. Poslední se odehrála před 25 600 lety na Novém Zélandu,[37] přičemž se průměrně opakují každých 50 tisíc let. Mezi další takto silné erupce patří výbuch Yellowstonské kaldery před 630 tisíci roky nebo výbuch Toby před 74 tisíci roky.[38][39] Nutno dodat, že s přibývající sílou klesá četnost těchto událostí. Bylo prostudováno téměř 8 tisíc sopečných erupcí, k nimž došlo v holocénu (posledních 11 700 let), přičemž 90 % z nich mělo index VEI 3 a méně.[40]

Index vulkanické aktivity (VEI)[41][42]
VEI Množství vyvrženého materiálu Typ erupce Výška sopečného mraku/sloupce Průměrná frekvence Příklady některých erupcí
0 do 10 000 m³ havajská erupce do 0,1 km nepřetržitě Kilauea (1977), Piton de la Fournaise (2017)
1 0,01–1 mil. m³ havajská a strombolská erupce 0,1–1 km každý den Stromboli (od dob Římské říše), Nyiragongo (2002)
2 1–10 mil. m³ strombolská, vulkánská erupce 1–5 km každé 2 týdny Cumbre Vieja (1949), Sinabung (2010), Whakaari (2019)
3 10–100 mil. m³ vulkánská, peléjská a subpliniovská erupce 3–15 km každé 3 měsíce Nevado del Ruiz (1985), Soufrière Hills (1995), Semeru (2021)
4 0,1–1 km³ peléjská, subpliniovská a pliniovská erupce nad 10 km každých 18 měsíců Mont Pelée (1902), Eyjafjallajökull (2010), Taal (2020)
5 1–10 km³ peléjská a pliniovská erupce nad 10 km každých 12 let Vesuv (79), Mount St. Helens (1980), Hunga Tonga (2022)
6 10–100 km³ pliniovská a ultrapliniovská erupce nad 20 km každých 50–100 let Ilopango (~431), Krakatoa (1883), Pinatubo (1991)
7 100–1000 km³ ultrapliniovská erupce nad 20 km každých 500–1000 let Campi Flegrei (~39 280 př. n. l.), Théra (~1600 př. n. l.), Tambora (1815)
8 více než 1 000 km³ ultrapliniovská erupce nad 20 km každých 50 000 let Yellowstone (~630 000 př. n. l.), Toba (~74 000 př. n. l.)

Odkazy

Reference

  1. Sopečná činnost a sopky . geologický informační server cit. 2009-06-06. Dostupné online. 
  2. Lauren R. Marshall; Elena C. Maters; Anja Schmidt; Claudia Timmreck; Alan Robock; Matthew Toohey. Volcanic effects on climate: recent advances and future avenues online. Bulletin of Volcanology, 2022-05. Dostupné online. (angličtina) 
  3. Grant Heiken; Grant H. Heiken; Kenneth Wohletz. Volcanic Ash. s.l.: University of California Press, 1985. Dostupné online. ISBN 0520052412, ISBN 9780520052413. S. 246. (angličtina) 
  4. Staff Writer. What Is the Ratio of Water to Steam?. https://www.reference.com/ online. 2020-03-27. Dostupné online. 
  5. A. B. Starostin; A. A. Barmin; Oleg Melnik. A transient model for explosive and phreatomagmatic eruptions online. Journal of Volcanology and Geotermal Research, 2005-05. Dostupné online. (angličtina) 
  6. John Pickrell. Why deadly New Zealand volcano eruption was hard to predict. https://www.nature.com/ online. 2019-12-11. Dostupné online. 
  7. Elaine Lies. Japanese troops head for volcano after eruption to search for missing climbers. https://www.chathamdailynews.ca/ online. 2014-09-27. Dostupné online. 
  8. Pavel Bokr. Sopečná činnost a sopky. http://www.gweb.cz/ online. 2004-10-11. Dostupné online. 
  9. Dušan Hovorka. Sopky - Vznik, produkty, dôsledky. s.l.: Veda, 1990. 156 s. Dostupné online. ISBN 80-224-0014-9. (slovenština) 
  10. a b c d J. Ball. Types of Volcanic Eruptions. https://geology.com online. Dostupné online. 
  11. Jessica Ball. Types of Vocanic Eruptions. https://geology.com/ online. Dostupné online. 
  12. Volcano Discovery. Hawaiian eruption. https://www.volcanodiscovery.com/ online. Dostupné online. 
  13. a b Robert W. Decker; Barbara B. Decker. volcano. https://www.britannica.com/ online. 2022-02-11. Dostupné online. 
  14. a b c d e f g h Haraldur Sigurðsson. The Encyclopedia of Volcanoes. s.l.: Academic Press, 2015. 1456 s. ISBN 978-0-12-385938-9. (angličtina) 
  15. Volcano Discovery. strombolian eruption. https://www.volcanodiscovery.com/ online. Dostupné online. 
  16. Vulkánské erupce. https://sites.google.com/ online. cit. 2022-12-02. Dostupné v archivu pořízeném z originálu dne 2022-09-20. 
  17. a b USGS. Pyroclastic flows move fast and destroy everything in their path. https://www.usgs.gov online. Dostupné online. 
  18. Pélejské erupce. https://sites.google.com/ online. cit. 2022-12-02. Dostupné v archivu pořízeném z originálu dne 2022-09-20. 
  19. KINDS OF VOLCANIC ERUPTIONS. https://web.archive.org/ online. cit. 2022-09-15. Dostupné v archivu pořízeném z originálu dne 2006-01-10. 
  20. a b National Park Service. Pyroclastic Flows and Ignimbrites, and Pyroclastic Surges. https://www.nps.gov online. Dostupné online. 
  21. Volcanics in outcrop: Pyroclastic density currents. https://www.geological-digressions.com online. Dostupné online. 
  22. Timothy M. Kusky. Déjà vu: Might Future Eruptions of Hunga Tonga-Hunga Ha’apai Volcano be a Repeat of the Devastating Eruption of Santorini, Greece (1650 BC)? online. Journal of Earth Science, 2022-01-29. Dostupné online. (angličtina) 
  23. earth observatory. Tonga Volcano Plume Reached the Mesosphere. https://earthobservatory.nasa.gov/ online. 2022-01-15. Dostupné online. 
  24. David A. Yuen a spol. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano online. Earthquake Research Advances, 2022-07. Dostupné online. (angličtina) 
  25. Plinius mladší. Dopisy. s.l.: Svoboda, 1988. 392 s. Dostupné online. 
  26. Robert Peckyno. Who was the first volcanologist?. https://volcano.oregonstate.edu online. 2010-05-06. Dostupné online. 
  27. https://www.researchgate.net/publication/223685847_The_25_September_2007_eruption_of_Mount_Ruapehu_New_Zealand_Directed_ballistics_surtseyan_jets_and_ice-slurry_lahars
  28. D. Byrd; S. Gonzaga. Surtsey, volcanic island, emerged in 1963. https://earthsky.org online. 2021-11-14. Dostupné online. 
  29. National Park Service. Jökulhlaups. https://www.nps.gov online. Dostupné online. 
  30. G. Wells. Jökulhlaups: a Key to Glacier Dynamics, Hydrology, and Landscape Change by Greta Wells, 2021 Cryosphere WG Fellow. https://iasc.info online. 2021-09-28. Dostupné online. 
  31. P. M. Medeiros a spol. Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean online. Advancing Earth And Space Science, 2015-04-25. Dostupné online. (angličtina) 
  32. T. Karlík. Před 10 lety paralyzovala erupce islandské sopky Evropu. Teď se tam probouzí jiná oblast. https://ct24.ceskatelevize.cz online. 2020-04-14. Dostupné online. 
  33. S. Guo; W. I. Rose; G. J. S. Bluth; I. M. Watson. Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice online. Geochemistry Geophysics Geosystems, 2004-07. Dostupné online. 
  34. L. Giacomelli; A. Perrotta; R. Scandone; C. Scarpati. The eruption of Vesuvius of 79 AD and its impact on human environment in Pompei online. Episodes, 2003-10. Dostupné online. (angličtina) 
  35. J. Luterbacher; C. Pfister. The year without a summer online. Nature geoscience, 2015-04. Dostupné online. (angličtina) 
  36. C. M. Vidal a spol. The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era online. Scientific Reports, 2016-10. Dostupné online. (angličtina) 
  37. N. W. Dunbar; N. A. Iverson; A. R. V. Eaton; M. Sigl; B. V. Alloway; A. V. Kurbatov; L. G. Mastin. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica online. Nature, 2017-09-25. Dostupné online. (angličtina) 
  38. J. Alean; R. Carniel; M. Fulle. Yellowstone Hotspot and Volcanic Activity. https://www.swisseduc.ch online. Dostupné online. 
  39. L. Crick a spol. New insights into the ∼ 74 ka Toba eruption from sulfur isotopes of polar ice cores online. Climate of the Past, 2021-10. Dostupné online. (angličtina) 
  40. L. Siebert; T. Simkin; P. Kimberly. Volcanoes of the World: Third Edition. s.l.: University of California Press, 2010. 568 s. Dostupné online. ISBN 978-0-520-94793-1. (angličtina) 
  41. Volcanic Explosivity Index (VEI). https://www.nps.gov online. Dostupné online. 
  42. C. G. Newhall; S. Self. The Volcanic Explosivity Index (VEl): An Estimate of Explosive Magnitude for Historical Volcanism online. Journal of Geophysical Research, 1982-02-20 cit. 2022-09-15. Dostupné v archivu pořízeném dne 2013-12-13. (angličtina) 

Literaturaeditovat | editovat zdroj

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Sopečná_erupce
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Ázerbájdžán
Újezd (Malá Strana)
Úmrtí v roce 2021
Úrodnost
Ústup ledovců od roku 1850
Úterý
Útok na Univerzitu v Garisse
Čáslav
Číslo
Čechy
Čeněk Junek
Černé moře
Černý uhlík
Červen
Červenec
Česká Wikipedie
České Budějovice
Český ježek
Český Krumlov
Český Těšín
Česko
Českobratrská církev evangelická
Československý svaz žen
Řád německých rytířů
Říšský sněm (Svatá říše římská)
Řím
Římské číslice
Řecko
Šestá hodnotící zpráva IPCC
Šetření energií
Španělé
Španělsko
Štýrské vévodství
Štýrský Hradec
Švédsko
Švýcarsko
Švališér
Železná opona
Železniční nehoda v Sekulích
Železniční trať Plzeň – Furth im Wald
Ženijní vojsko
Židé
Židovský kalendář
Životní prostředí
Žofie Dorotea Šlesvicko-Holštýnsko-Sonderbursko-Glücksburská
1. červenec
1. duben
1. listopad
1. prosinec
1. srpen
10. červenec
10. duben
10. pěší pluk
10. prosinec
10. srpen
1015
1099
11. červenec
11. duben
11. srpen
11. září
1103
1120
1199
12. únor
12. červen
12. červenec
12. říjen
12. březen
12. duben
12. květen
12. srpen
1240
1252
1276
13. únor
13. červen
13. červenec
13. říjen
13. březen
13. duben
13. květen
13. leden
13. srpen
1348
1385
14. červenec
14. říjen
14. duben
14. srpen
14. září
1410
1442
1453
1461
1473
1490
1496
1497
15. únor
15. červen
15. červenec
15. duben
15. prosinec
15. srpen
15. století
15. září
1504
1506
1521
1526
1553
1555
1559
1561
1562
1563
1564
1566
1567
1570
1579
1584
1593
1595
1597
16. únor
16. červenec
16. duben
16. listopad
16. prosinec
16. srpen
16. století
16. září
1606
1607
1615
1616
1618
1619
1623
1626
1632
1633
1634
1635
1636
1637
1638
1639
1640
1646
1647
1649
1651
1653
1656
1657
1663
1667
1669
1671
1672
1676
1679
1685
1689
1690
1694
1695
1697
1698
17. červenec
17. duben
17. květen
17. srpen
17. století
1701
1703
1706
1707
1708
1710
1711
1715
1716
1717
1718
1719
1725
1733
1737
1744
1745
1758
1762
1767
1772
1773
1775
1778
1779
1783
1789
1792
1793
1796
1797
1798
1799
18. únor
18. červenec
18. březen
18. duben
18. leden
18. pěší pluk
18. srpen
18. století
18. září
1800
1802
1803
1805
1806
1808
1810
1811
1813
1814
1815
1816
1817
1820
1821
1823
1824
1827
1828
1829
1833
1834
1835
1838
1840
1841
1844
1847
1849
1850
1857
1859
1862
1863
1864
1866
1867
1868
1869
1871
1872
1874
1875
1876
1877
1878
1879
1884
1885
1886
1888
1889
1890
1891
1892
1893
1895
1896
1897
1898
1899
19. únor
19. červenec
19. říjen
19. duben
19. květen
19. leden
19. srpen
19. století
19. září
1900
1902
1903
1904
1905
1906
1907
1909
1910
1912
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1932
1933
1934
1935
1937
1939
1940
1941
1943
1944
1945
1946
1947
1948
1949
1950
1952
1953
1958
1960
1961
1962
1963
1964
1966
1967
1968
1970
1973
1975
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1992
1993
1994
1995
1997
1998
1999
2. únor
2. červenec
2. duben
2. prosinec
2. srpen
2. tisíciletí
20. červenec
20. říjen
20. duben
20. květen
20. srpen
2001
2002
2003
2004
2010
2012
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
21. únor
21. červenec
21. duben
21. leden
21. prosinec
21. srpen
21. září
22. únor
22. červenec
22. říjen
22. duben
22. listopad
22. srpen
23. únor
23. červen
23. červenec
23. říjen
23. březen
23. duben
23. květen
23. leden
23. listopad
23. srpen
238
24. červenec
24. říjen
24. duben
24. květen
24. listopad
24. srpen
24. září
25. červen
25. červenec
25. duben
25. leden
25. listopad
25. srpen
25. září
26. únor
26. červen
26. červenec
26. březen
26. duben
26. květen
26. leden
26. srpen
27. červen
27. červenec
27. březen
27. duben
27. květen
27. srpen
28. červen
28. červenec
28. říjen
28. duben
28. květen
28. leden
28. listopad
28. prosinec
28. srpen
28. září
29. červenec
29. březen
29. duben
29. leden
29. srpen
29. září
3. červenec
3. březen
3. duben
3. květen
3. pěší pluk (Habsburská monarchie)
3. srpen
3. září
30. červen
30. červenec
30. březen
30. duben
30. květen
30. listopad
30. srpen
30. září
31. červenec
31. říjen
31. srpen
35. pěší pluk
4. únor
4. červen
4. červenec
4. březen
4. duben
4. květen
4. srpen
4. století
4. září
484 př. n. l.
5. únor
5. červenec
5. říjen
5. duben
5. srpen
5. září
6. červenec
6. duben
6. květen
6. listopad
6. srpen
7. únor
7. červenec
7. říjen
7. březen
7. duben
7. leden
7. srpen
7. září
70
748
8. únor
8. červenec
8. duben
8. květen
8. srpen
8. září
814
9. únor
9. červenec
9. říjen
9. březen
9. duben
9. květen
9. leden
9. listopad
9. srpen
9. září
972
988
Aš-Šabáb
Abatyše
Adam Benedikt Bavorovský
Adam Rodriguez
Adaptace na globální oteplování
Adolf Šimperský
Adolf Procházka
Adriaen van de Velde
Aerosol
Albánie
Albedo
Albrecht Fridrich Rakousko-Těšínský
Aleš Pikl
Aleš Svoboda (anglista)
Alexander Roslin
Alexandr Abaza
Alexandr I. Jagellonský
Alexandr Něvský
Alois Pravoslav Trojan
Amanda Gormanová
Ambroise Thomas
Americká válka za nezávislost
Amharsko
Andronikos IV.
Anglické království
Anna Stuartovna
Antarktida
Antonín Hardt
Antonio Barberini
Arad (Rumunsko)
Arcivévoda
Arcivévoda Ferdinand
Argentina
Argentinská invaze na Falklandy
Aristokrat
Arktida
Armádní sbor
Arménie
Arnošt Habsburský
Arnošt Okáč
Atlantská poledníková převratná cirkulace
Atmosféra Země
Atomové bombardování Hirošimy a Nagasaki
Atribuce probíhající klimatické změny
August Heinrich Hoffmann von Fallersleben
Automobilka
Autoritní kontrola
Aztécká říše
Bádensko-Württembersko
Bělení korálů
Bělorusko
Břežany (okres Znojmo)
Březen
Barbara Žofie Braniborská
Barokní architektura
Bazilika Svatého hrobu
Bazilika svatého Pavla za hradbami
Belgie
Berlín
Berlínská blokáda
Berlínská stěna
Berlínská zeď
Berlin Ostbahnhof
Berlin Wall
Beroun
Bertha Benzová
Beton
Bioenergie
Bitva na Něvě
Bitva u Castiglione
Bitva u Dolních Věstonic
Bitva u Grunwaldu
Bitva u Partizánské Ľupči
Bitva u Petrovaradína
Bitva u Wittstocku
Boček z Poděbrad
Body zvratu klimatického systému
Boeing B-29 Superfortress
Bohumír Kapoun ze Svojkova
Boleslav I.
Boleslav II.
Boris Hybner
Borys Antonenko-Davydovyč
Braniborská brána
Bratislava
Brno
Brusel
Budapešť
Burkina Faso
Císařská armáda (habsburská)
Císařský pěší pluk č. 28 (1769)
Cement
Chaluhy
Chauncey Delos Beadle
Cheb
Checkpoint Charlie
Chicago
Chile
Chlévský hnůj
Chorvatsko
Christianizace
Christian Knorr von Rosenroth
Chrudim
Cieszyn
Cilli
Cisterciáni
Cithara sanctorum
Citlivost klimatu
Clerfayt
CN Tower
Commons:Featured pictures/cs
Conquista
Conrad Aiken
Conrad Schumann
Covid-19
Cremona
Cyril Zapletal
Dělení Polska
Dělostřelectvo
Důlní neštěstí Copiapó 2010
Daimjó
Dalibor z Kozojed
Daniel Alexius z Květné
Daniel Speer
Daniel Stach
David Ferrer
Dengue
Dentista
Deodoro da Fonseca
Dezertifikace
De Ligne
Diecéze míšeňská
DIE ZEIT
Dionýz Štúr
Dioskúrové
Divize (vojenství)
Dlouhá turecká válka
Dobývání Aztécké říše
Doba meziledová
Dolar
Dolní Rakousy
Domažlice
Domenico Passignano
Dopady globálního oteplování
Doprava
Dragoun
Drahomíra Pithartová
Druhá světová válka
Duben
Dukla
Dusty Hill
East Side Gallery
Eduard Lederer
Eduard Orel
Egon Krenz
Egypt
Egyptské hieroglyfy
Ekonomické důsledky klimatických změn
Ekonomie globálního oteplování
Ekosystém
Elektřina
Elektromobil
Eliška Junková
El Niño – Jižní oscilace
Emilie Bednářová
Enže
Encyklopedie
Energetická účinnost
Environmentální migrace
Erich Honecker
Erich Mielke
Erika
Etiopie
Eutrofizace
Evžen Savojský
Evangelická církev
Evropa
Ewald Hering
Extrémy počasí
Fat Man
Ferdinand Bonaventura z Harrachu
Ferdinand II. Štýrský
Ferdinand III. Habsburský
Ferdinand III. Kastilský
Ferdinand IV. Habsburský
Ferdinand Maria Bavorský
Ferdinand z Ditrichštejna
Filip IV. Španělský
Film
Filozofická fakulta Jihočeské univerzity
Ford model A (1903)
Ford Motor Company
Forest Whitaker
Fosilní palivo
Francesco Maria Grimaldi
Francie
Francouzská národní knihovna
Francouzské království
Francouzsko-španělská válka
František Bernard Vaněk
František Buttula
František Harant
František Hošek
František Hochmann
František Jiří Mach
František Josef Kinský
František Minařík
František Pospíšil
František Svoboda (fotbalista)
František Taufer
František Vitásek (kněz)
František Vrbka
František z Ditrichštejna
Franz Anton Hillebrandt
Freiburg im Breisgau
Freon
Fytoplankton
Görlitz
Günter Schabowski
Gęsiówka
Gemeinsame Normdatei
Gent
Geoinženýrství
Georg Caspar Wecker
Giacomo Casanova
Giacomo Tritto
Gilbert du Motier, markýz de La Fayette
Globální ochlazování
Globální oteplování
Globální stmívání
Go-Momozono
Golfský proud
Google
Google+
Gorbačov
Gorice a Gradiška
Gotická architektura
Grónský ledovec
Grónsko
Grand Prix Německa
Gregoriánský kalendář
Gustave Lanson
Guy de Maupassant
Győr
Habsburská monarchie
Hans Christian Andersen
Harvardova univerzita
Hedvika Eleonora Holštýnsko-Gottorpská
Hegemonie
Herbert George Wells
Hernán Cortés
Hlavní strana
Hliník
Hnojivo
Hohenlohe
Horní Lužice
Horní Rakousy
Hospodářské zvíře
Hospodářský růst
Hovězí maso
Hradec Králové
Hugo Salus
Hulán
Husar
Hynek Albrecht
Ich bin ein Berliner
Igor Vsevoložskij
IHned.cz
Ilja Repin
Incident v Tonkinském zálivu
Indie
Infekční onemocnění
Infračervené záření
Innsbruck
Innviertel
Instrumentální záznamy teplot
International Standard Book Number
International Standard Serial Number
Internet Archive
Italská tažení francouzských revolučních válek
Italské království
Ivar Aasen
Jánoš Korvín
Ján Burius
Jaan Kaplinski
Jaderná energie
Jakub Antonín Zemek
Jaltská dohoda
James Hansen
Jana Andresíková
Jana Plodková
Jan Karel Hraše
Jan Karel Liebich
Jan Vanýsek
Japonsko
Jaromír Hořejš
Jaroslav Arnošt Trpák
Jaroslav Drobný (tenista)
Jaroslav Kladenský z Kladna
Jaroslav Volek
Jean-Baptiste Dumas
Jeruzalém
Jiří Adamíra
Jiří Dánský
Jiří Kovařík (historik)
Jiří Malenovský
Jiří Pavlov
Jiří z Poděbrad
Jiřina Hanušová
Jižní polokoule
Jihlava
Jihovýchodní Asie
Jindřiška Adéla Marie Savojská
Jindřiška Klímová
Jindřich
Jindřich Eckert
Jindřich Geisler
Jindřich I. Anglický
Jindřich IV.
Jindřich Ladislav Barvíř
Jindřich Mahelka
Jindřich Veselý
Jindřich Wankel
Jocelyn Bellová Burnellová
Johann Friedrich Struensee
Johann Joseph Würth
Johann Wilhelm Ludwig Gleim
John Fitzgerald Kennedy
Josef Šnejdárek
Josef Fischer (filosof)
Josef Hrnčíř
Josef Jaromír Štětka
Josef Kalousek
Josef Kovalčuk
Josef Obeth
Josef Patzel
Joseph Merrick
Judenburg
Jules Mazarin
Křesťanství
Křišťan
Kanada
Kancionál
Kapitulace u Világoše
Karel Škorpil
Karel Babánek
Karel I. Stuart
Karel Jiráček
Karel Nepraš
Karel Odstrčil
Karel starší ze Žerotína
Karel Veliký
Karel X. Gustav
Karola Vasa-Holstein-Gottorpská
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Narození 5. srpna
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Kathrin Zettelová
Kaunitz
KDU-ČSL
Keelingova křivka
Khevenhüller
Klášter
Klimatická bezpečnost
Klimatická krize
Klimatická spravedlnost
Klimatická stagnace
Klimatické změny
Klimatický model
Klimatický systém
Kluž
Kníže
Knin
Košice
Koks
Kolín
Koloběh uhlíku
Komunismus
Kondenzační jádro
Konflikt v Tigraji 2020
Kongresové centrum Praha
Kopaničářství
Korál
Korálový útes
Korunní země
Korutany
Kosmodrom Bajkonur
Kostel svatého Petra a Pavla (Görlitz)
Kouřim
Kraňské vévodství
Kremže
Kristýna I. Švédská
Kristián
Kroměříž
Kryštof z Gendorfu
Kryscina Cimanouská
Kukuřice
Kunhuta ze Šternberka
Kurt Biedenkopf
Kutná Hora
Květen
Kyjev
Kyjevská Rus
Kyrysník
Kyslík
Lalibela
Landstreitkräfte
Latina
Laura Mancini
Ledový příkrov
Leoben
Leonardo Leo
Leonid Iljič Brežněv
Leon Max Lederman
Leopold Chalupa
Leopold I.
Les
Lesní požár
Letní olympijské hry 2020
Levoča
Libéral Bruant
Library of Congress Control Number
Linec
Linford Christie
Lipník nad Bečvou
Litoměřice
Litomyšl
Lombardie
Los Angeles
Lužice
Lužická Nisa
Lublaň
Ludvík Kolek
Ludvík XIII.
Ludvík XVI.
Ludvík XVIII.
Ludwig von Benedek
Ludwig Wokurek
Luisa Oranžsko-Nasavská
Luteránství
Lvov
Lyon
Mírný pás
Mühlviertel
Městské okresy v Německu
Maďarská revoluce 1848–1849
Malárie
Malá doba ledová
Maledivy
Mannheim
Mantova
Maršál
Maria Sibylla Merianová
Marie Antonie Habsburská
Marie Dostalová
Marie Medicejská
Marie Terezie
Marie Waltrová
Marilyn Monroe
Markéta Habsburská (1651–1673)
Markýz
Mars 6
Martin Antonín Lublinský
Mart Stam
Marvin Gaye
Masakry ve varšavské čtvrti Wola
Masamune Date
Massachusetts
Matyáš Korvín
Maurice Papon
Maxmilián II. Emanuel
Maxmilián II. Habsburský
Mayové
Melchiorre Cafà
Methan
Metro (deník)
Mezivládní panel pro změnu klimatu
Michail I. Fjodorovič
Michal Pavlata (herec)
Michal Sendivoj ze Skorska
Milán
Milankovičovy cykly
Milavče
Miloš Navrátil (muzikolog)
Miloslav Stehlík
Miroslav Štěpán
Miroslav Jindra
Miroslav Liberda
Mistrovství světa ve fotbale 2018
Mlži
Mladá Boleslav
Mořské ptactvo
Mořský led
Mořský proud
Mokřad
Mons
Monzun
Morava
Moravské markrabství
Moskva
Most
Murad IV.
Muslimové
Náhorně-karabašská republika
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní garda (Francie)
Národní knihovna České republiky
Národní knihovna Izraele
Nürburgring
Němčina
Německá demokratická republika
Německo
Německo-polská státní hranice
Nadace Wikimedia
Nadmořská výška
Nagasaki
Namur
Napoleonovo tažení do Egypta a Sýrie
Napoleonské války
Napoleon Bonaparte
Natálie Kubištová
National Archives and Records Administration
Naum Gabo
Neil Armstrong
Nelson Mandela
Neugebauer
New York
Nicolas Boileau
Nicolas Malebranche
Niels Henrik Abel
Nikita Sergejevič Chruščov
Nikolaj Gavrilovič Spafarij
Nizozemská revoluce
Nizozemsko
Norsko
Nové Město na Moravě
Nový Bydžov
Nový Jičín
Nova Gorica
Novgorod
Novorossijsk
Oběžná dráha
Oblak
Obnovitelná energie
Ocel
Odlesňování
Odpadní voda
Okupační zóny Německa
Okyselování oceánů
Olomouc
Olympijské hry
Operace Bouře
Operace Bronse
Operace Pierce Arrow
Oradea
Organizace spojených národů
Organizace ukrajinských nacionalistů
Osijek
Osmanská říše
Osmansko-habsburské války
Osmdesátiletá válka
Ostřihom
Ostnatý drát
Oudenaarde
Oxford University Press
Oxid dusný
Oxid siřičitý
Oxid uhličitý
Ozbrojené síly Turecka
Ozon
Pád Berlínské zdi
Pád Konstantinopole
Pěchota
Přívalový déšť
Předměstí
Přemyšl
Přemysl Otakar II.
Přerov
Přimda (hrad)
Pšenice
Paříž
Pařížská dohoda
Pagekon obří
Palais du Luxembourg
Paleocenní–eocenní teplotní maximum
Palestina
Palmový olej
Památková rezervace
Památník Berlín-Hohenschönhausen
Pandemie covidu-19
Pandemie covidu-19 v Česku
Panoráma
Papež
Parní stroj
Patrick Ewing
Pavel Krbálek
Pavel Vízner
Pellegrini
Pequotská válka
Permafrost
Petra Faltýnová
Petr Štěpánek (pedagog)
Petr Lom
Petr Nováček
Petr Prouza
Petr Urbánek (básník)
Pevnina
Pforzheim
Piero Sraffa
Pierre-Esprit Radisson
Pierre Zaccone
Pietro Antonio Cesti
Pivovar
Ploutvonožci
Pluk
Plzeň
Počasí
Pošta
Požáry
Požáry v Austrálii (2019–2020)
Poddanství
Podvýživa
Pohoří
Pokus o vojenský převrat v Turecku 2016
Polární zesílení
Polština
Polní maršál
Polní myslivec
Polní zbrojmistr
Polské království
Polsko
Polsko-litevská unie (1569–1795)
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Německo
Portál:Obsah
Portál:Příroda
Portál:Rakousko
Portál:Sport
Portál:Válka
Port Stanley
Posádka
Postupimské náměstí
Potenciál globálního oteplování
Poušť
Povodeň
Průjem
Průmysl
Průmyslová revoluce
Praha
Prapor (jednotka)
Prapor Zośka
Prešov
Prevét
Program OSN pro životní prostředí
Propad uhlíku
Prostějov
Proxy data
Pruské Slezsko
Prusko
Prusko-rakouská válka
První křížová výprava
První světová válka
Q5086#identifiers
Q5086#identifiers|Editovat na Wikidatech
Rámcová úmluva OSN o změně klimatu
Rýže
Radiační působení
Rafail Levickij
Raimund Montecuccoli
Rakouské arcivévodství
Rakouské císařství
Rakouské Slezsko
Rakouské vévodství
Rakousko
Rakousko-uherská armáda
Rakousko-uherské vyrovnání
Rakousko-Uhersko
Rakovník
Referendum
Rembrandt
Renesanční architektura
Republika Srbská Krajina
Robotní patent (1775)
Rok
Roman Pokorný
Ronald Reagan
Ropa
Ropná skvrna
Rosetta
Rosettská deska
Rozdělení Berlína
Rozvojová země
Rudolf Štrubl
Rudolf Bergman
Rudolf I. Habsburský
Rudolf z Thunu
Ruské carství
Rusko
Sémiotika
Sírany
Sója (rod)
Safíovci
Safí I.
Sahara
Sakrální stavba
Sambir
Sankt Pölten
Sanok
Santorio Santorio
Sapér
SARS-CoV-2
Sasko
Scénáře socioekonomického vývoje
Scénáře socioekonomického vývoje#SSP1: Udržitelný vývoj (zelená cesta)
Scénáře socioekonomického vývoje#SSP3: Regionální rivalita (kamenitá cesta)
Scénáře socioekonomického vývoje#SSP5: Rozvoj založený na fosilních palivech (cesta po dálnici)
Schutzstaffel
Sedmihradsko
Segedín
Sekule
Senát Spojených států amerických
Sergej Adamovič Kovaljov
Severní Amerika
Severní polokoule
Seznam římských králů
Seznam olomouckých biskupů a arcibiskupů
Seznam pěších pluků císařsko-habsburské armády
Seznam světového dědictví v Africe#Etiopie
Skládka
Skleníkové plyny
Skleníkový efekt
Slaný
Slezská kuchyně
Slezsko
Slovo roku
Sluneční aktivita
Sluneční energie
Sluneční zářivost
Sníh
Socha Svobody
Sociální nerovnost
Solární panel
Songgotu
Sopečná erupce
Soubor:09 September - Percent of global area at temperature records - Global warming - NOAA cs.svg
Soubor:20210331 Global tree cover loss - World Resources Institute.svg
Soubor:Adamrodriguez05.JPG
Soubor:Battaillon – Parade-Ordnung 1749.png
Soubor:Battaillon – Schlacht-Ordnung 1749.png
Soubor:Berlin-wall-map en.svg
Soubor:Berlinermauer.jpg
Soubor:Berliner Mauer.jpg
Soubor:BerlinWall01b.jpg
Soubor:Berlin Wall (13-8-2006).jpg
Soubor:Berlin Wall 1961-11-20.jpg
Soubor:Berlin Wall death strip, 1977.jpg
Soubor:Berlin wall street sign crossed on bicycle 2011.jpg
Soubor:Berlin Wall victims monument.jpg
Soubor:Bleachedcoral.jpg
Soubor:BrandenburgerTorDezember1989.jpg
Soubor:Bundesarchiv Bild 173-1321, Berlin, Mauerbau.jpg
Soubor:Bundesarchiv Bild 183-1990-0325-012, Berlin, East Side Gallery.jpg
Soubor:Bundesarchiv Bild 183-87605-0002, Berlin, Mauerbau, US-Soldaten, Volkspolizisten.jpg
Soubor:Bundesarchiv Bild 183-88574-0004, Berlin, Mauerbau, Bauarbeiten.jpg
Soubor:Bundesarchiv Bild B 145 Bild-P061246.jpg
Soubor:Change in Average Temperature With Fahrenheit.svg
Soubor:CO2 Emissions by Source Since 1880.svg
Soubor:Daniel Stach (2016).jpg
Soubor:David Ferrer - Roland-Garros 2013 - 014.jpg
Soubor:Di05.jpg
Soubor:East German Guard - Flickr - The Central Intelligence Agency (cropped).jpg
Soubor:Endangered arctic - starving polar bear edit.jpg
Soubor:Fenster-des-Gedenkens-Berlin.jpg
Soubor:Ferdinand Maria of Bavaria.jpg
Soubor:Forest Whitaker.jpg
Soubor:František Pospíšil 2015.JPG
Soubor:GDMaupassant.jpg
Soubor:Globalni emise sklenikovych plynu a moznosti jejich snizeni CS.svg
Soubor:Globalni toky energie cs.svg
Soubor:Global Energy Consumption-cs.svg
Soubor:Greenhouse Gas Emissions by Economic Sector-cs.svg
Soubor:Greenhouse gas emission scenarios 01-cs.svg
Soubor:Guy de Maupassant fotograferad av Félix Nadar 1888.jpg
Soubor:Ilya Repin (1909).jpg
Soubor:Jana Plodková 2015.JPG
Soubor:Kaiserliches Kürassierregiment K 2 1734 Gudenushandschrift.jpg
Soubor:Karel starší ze Žerotína.png
Soubor:Kathrin Zettel.jpg
Soubor:Kennedy in Berlin.jpg
Soubor:Lambiel at the 2010 European Championships.jpg
Soubor:Launch of IYA 2009, Paris - Grygar, Bell Burnell cropped.jpg
Soubor:Lederer Eduard (1859-1944).jpg
Soubor:Leon M. Lederman.jpg
Soubor:Linford Christie 2009.png
Soubor:Mapa-zmeny-teploty.svg
Soubor:Marvin Gaye (1965).png
Soubor:Mauerrest an der Niederkirchnerstraße 2009.JPG
Soubor:Mauna Loa CO2 monthly mean concentrationCS.svg
Soubor:Mountain Pine Beetle damage in the Fraser Experimental Forest 2007.jpg
Soubor:Nagasakibomb.jpg
Soubor:National Park Service Thawing permafrost (27759123542).jpg
Soubor:Neil Armstrong pose.jpg
Soubor:NORTH POLE Ice (19626661335).jpg
Soubor:Orroral Valley Fire viewed from Tuggeranong January 2020.jpg
Soubor:Patrick Ewing Magic cropped.jpg
Soubor:Physical Drivers of climate change-cs.svg
Soubor:Projected Change in Temperatures-cs.svg
Soubor:Rembrandt Harmensz. van Rijn 141.jpg
Soubor:Sea level history and projections-cs.svg
Soubor:Soil moisture and climate change-cs.svg
Soubor:Structure of Berlin Wall-info-de.svg
Soubor:Svět knihy 2009 - Boris Hybner.jpg
Soubor:Teddy Sheringham 2012.jpg
Soubor:Thilafushi1.jpg
Soubor:Vývoj koncentrace CO2 v atmosféře.svg
Soubor:Vývoj průměrné světové teplotní anomálie.svg
Soubor:Vitus Bering.jpg
Soubor:West and East Berlin.svg
Soubor:Woodbridge Wimbledon 2004.jpg
Speciální:Kategorie
Speciální:Nové stránky
Speciální:Statistika
Speciální:Zdroje knih/80-7185-172-8
Speciální:Zdroje knih/9788090274556
Spojené státy americké
Spréva
Srážka vlaků u Milavčí
Srážky
Srpen
Státní hranice
Stéphane Lambiel
Střední Evropa
Středověké klimatické optimum
Staré Brno
Status quo
Stratosféra
Stryj
Studená válka
Subsaharská Afrika
Subtropický pás
Sucho
Světová banka
Světová zdravotnická organizace
Světskost
Svatá říše římská
Svijonožci
Sydney Camm
Těšín
Těžba uhlí
Třicetiletá válka
Tamuz
Tarnów
Teddy Sheringham
Tenis
Tenochtitlán
Teorie černé labutě
Tepelná kapacita
Tepelné čerpadlo
Teresa Pola
Ternopil
Terry Cooper
The Guardian
Thilafushi
Thurn
Tigrajská lidově osvobozenecká fronta
Titus
Tobiáš Jan Becker
Todd Woodbridge
Tokio
Toky uhlíku
Tomáš Hoskovec
Tomáš Koutný
Tony Esposito (lední hokejista)
Toronto
Tramvaj
Tropická cyklóna
Tropické cyklóny a změna klimatu
Tropický pás
Troposféra
Tung Čchi-čchang
Tuvalu
Tyrolské hrabství
Užhorod
Udržitelná doprava
Udržitelná energie
Uherské Hradiště
Uherské království
Uhersko
Uhlí
Uhlíková neutralita
Uhlíkový rozpočet
Ukončování využívání fosilních paliv
UNESCO
Univerzitní systém dokumentace
Urban VIII.
Václav Fiala (ilustrátor)
Václav Havel
Václav Kotrba
Václav Vojtěch Červenka z Věžňova
Válka
Válka o Falklandy
Válka o polské následnictví
Válka ve Vietnamu
Vídeň
Vídeňská operace
Vídeňský les
Vídeňský mír
Východní Asie
Východní blok
Východní Evropa
Východní Germáni
Vědecký konsenzus o změně klimatu
Věra Beranová
Větrná energie
Vakcína proti covidu-19
Varšavská smlouva
Varšavské povstání
Variabilita klimatu
Veřejná doprava
Vegetace
Velké okresní město
Velký bariérový útes
Vesmír
Viktor Hájek
Vilém Aetheling
Vilém Kropp
Vincenzo Legrenzio Ciampi
Virtual International Authority File
Vital Šyšov
Vitus Bering
Vladimír Černík
Vladimír Šlechta
Vladimír Špidla
Vladimír I.
Vladimír Novák (voják)
Vladimír Vavřínek
Vladislav II. Jagello
Vladislav II. Jagellonský
Vladislav IV. Vasa
Vlastimil Letošník
Vlhkost vzduchu
Vliv globálního oteplování na člověka
Vlna veder
Vodní energie
Vodní pára
Vojtěch Kryšpín (pedagog)
Volkspolizei
Vrchlabí
Vymírání
Vypařování
Vytápění
Vzestup hladiny oceánů
Walter Ulbricht
Wieselburg
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2021
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2021
Wikipedie:Ověřitelnost
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/srpen
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2021
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
William Holman Hunt
Willi Stoph
Woodrow Wilson
WorldCat
Yucatánský poloostrov
Září
Západní Antarktida
Západní Berlín
Západní blok
Západní Německo
Západní Slované
Zatmění Slunce
Zdeněk Novák (generál)
Zeměbrana
Zemědělství
Země Koruny české
Zemní plyn
Zemský okres Zhořelec
Zgorzelec
Zmírňování změny klimatu
Znečištění ovzduší
Znečištění vody
Znojmo
Zpětná vazba
Zpětné vazby klimatických změn
Zpravodajská služba




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk