Shallow-water equations - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Shallow-water equations
 ...
Output from a shallow-water equation model of water in a bathtub. The water experiences five splashes which generate surface gravity waves that propagate away from the splash locations and reflect off the bathtub walls.

The shallow-water equations (SWE) are a set of hyperbolic partial differential equations (or parabolic if viscous shear is considered) that describe the flow below a pressure surface in a fluid (sometimes, but not necessarily, a free surface).[1] The shallow-water equations in unidirectional form are also called Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant (see the related section below).

The equations are derived[2] from depth-integrating the Navier–Stokes equations, in the case where the horizontal length scale is much greater than the vertical length scale. Under this condition, conservation of mass implies that the vertical velocity scale of the fluid is small compared to the horizontal velocity scale. It can be shown from the momentum equation that vertical pressure gradients are nearly hydrostatic, and that horizontal pressure gradients are due to the displacement of the pressure surface, implying that the horizontal velocity field is constant throughout the depth of the fluid. Vertically integrating allows the vertical velocity to be removed from the equations. The shallow-water equations are thus derived.

While a vertical velocity term is not present in the shallow-water equations, note that this velocity is not necessarily zero. This is an important distinction because, for example, the vertical velocity cannot be zero when the floor changes depth, and thus if it were zero only flat floors would be usable with the shallow-water equations. Once a solution (i.e. the horizontal velocities and free surface displacement) has been found, the vertical velocity can be recovered via the continuity equation.

Situations in fluid dynamics where the horizontal length scale is much greater than the vertical length scale are common, so the shallow-water equations are widely applicable. They are used with Coriolis forces in atmospheric and oceanic modeling, as a simplification of the primitive equations of atmospheric flow.

Shallow-water equation models have only one vertical level, so they cannot directly encompass any factor that varies with height. However, in cases where the mean state is sufficiently simple, the vertical variations can be separated from the horizontal and several sets of shallow-water equations can describe the state.

Equations

A one-dimensional diagram representing the shallow water model.

Conservative form

The shallow-water equations are derived from equations of conservation of mass and conservation of linear momentum (the Navier–Stokes equations), which hold even when the assumptions of shallow-water break down, such as across a hydraulic jump. In the case of a horizontal bed, with negligible Coriolis forces, frictional and viscous forces, the shallow-water equations are:

Here η is the total fluid column height (instantaneous fluid depth as a function of x, y and t), and the 2D vector (u,v) is the fluid's horizontal flow velocity, averaged across the vertical column. Further g is acceleration due to gravity and ρ is the fluid density. The first equation is derived from mass conservation, the second two from momentum conservation.[3]

Non-conservative form

Expanding the derivatives in the above using the product rule, the non-conservative form of the shallow-water equations is obtained. Since velocities are not subject to a fundamental conservation equation, the non-conservative forms do not hold across a shock or hydraulic jump. Also included are the appropriate terms for Coriolis, frictional and viscous forces, to obtain (for constant fluid density):

where

u is the velocity in the x direction, or zonal velocity
v is the velocity in the y direction, or meridional velocity
H is the mean height of the horizontal pressure surface
h is the height deviation of the horizontal pressure surface from its mean height, where h: η(x, y, t) = H(x, y) + h(x, y, t)
b is the topographical height from a reference D, where b: H(x, y) = D + b(x,y)
g is the acceleration due to gravity
f is the Coriolis coefficient associated with the Coriolis force. On Earth, f is equal to 2Ω sin(φ), where Ω is the angular rotation rate of the Earth (π/12 radians/hour), and φ is the latitude
k is the viscous drag coefficient
ν is the kinematic viscosity
Animation of the linearized shallow-water equations for a rectangular basin, without friction and Coriolis force. The water experiences a splash which generates surface gravity waves that propagate away from the splash location and reflect off the basin walls. The animation is created using the exact solution of Carrier and Yeh (2005) for axisymmetrical waves.[4]

It is often the case that the terms quadratic in u and v, which represent the effect of bulk advection, are small compared to the other terms. This is called geostrophic balance, and is equivalent to saying that the Rossby number is small. Assuming also that the wave height is very small compared to the mean height (hH), we have (without lateral viscous forces):







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk