Pytagorova veta - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Pytagorova veta
Ilustrácia Pytagorovej vety

Pytagorova veta je základná teoréma euklidovskej geometrie. Popisuje vzťah, ktorý platí medzi dĺžkami strán pravouhlého trojuholníka v rovine. Umožňuje jednoducho vypočítať dĺžku tretej strany trojuholníka, ak sú známe dĺžky jeho dvoch zvyšných strán. Slovne sa veta dá formulovať takto:

Obsah štvorca zostrojeného nad preponou (najdlhšou stranou) pravouhlého trojuholníka je rovný súčtu obsahov štvorcov zostrojených nad jeho odvesnami.

Formálne možno Pytagorovu vetu vyjadriť rovnicou

,

kde , dĺžky odvesien a je dĺžka prepony pravouhlého trojuholníka.[1]

Dejiny

Pytagorova veta je pomenovaná podľa starogréckeho matematika Pythagora zo Samu, ktorý ju v 6. storočí pred Kr. odvodil pre Európu resp. staroveké Grécko. Pravdepodobne bola ale známa aj v iných starovekých civilizáciách a navyše oveľa skôr (napríklad v Číne, Egypte).

Starí Egypťania a Indovia stavali pozoruhodné stavby. Pri týchto stavbách potrebovali vytyčovať aj pravé uhly. Často to robili takto: Na napnutom špagáte uviazali 13 uzlov tak, aby vzdialenosti medzi uzlami boli rovnaké (napr. po 50 cm). Špagát napli tak, že uzol 1 a 13 upevnili na tom istom mieste a uzly 4 a 8 tiež upevnili (pozri obrázok). Potom uhol 1, 4, 8 je pravý.

Pravý uhol

Zovšeobecnenie Pytagorovej vety

Nahradenie štvorcov inými plošnými obrazcami

Štvorce je možné vo formulácii vety nahradiť akýmikoľvek inými plošnými útvarmi (kružnicou, trojuholníkom, päťuholníkom a pod.) za predpokladu, že sú si navzájom podobné a ich šírka je priamo úmerná dĺžke príslušnej strany trojuholníka. Súčet obsahov týchto obrazcov nad odvesnami bude opäť rovný obsahu obrazca zostrojeného nad preponou.

Fakt, že to vyplýva už z formulácie pôvodnej vety so štvorcami nad stranami trojuholníka, je možné si uvedomiť vtedy, ak sa vezme do úvahy, že obsah každého z obrazcov je vzhľadom na platnosť predpokladov úmerný obsahu štvorca nad danou stranou a konštanta úmernosti je vždy rovnaká vďaka vzájomnej podobnosti obrazcov i štvorcov. Ak sa dosadí za plochu štvorcov do vzorca -násobok plochy obrazca, potom bude možné rovnicu krátiť konštantou a výsledkom bude hľadané zovšeobecnenie.

Zovšeobecnenie na tri všeobecné vektory v Unitárnom priestore

Pytagorovu vetu je možné zovšeobecniť na ľubovolný vektorový priestor so skalárnym súčinom tj. unitárny priestor. Trojuholníkom sú v tomto prípade myslené tri vektory , , , pre ktoré platí

Potom platí podobný vzťah normami týchto vektorov, ako v prípade rovinného trojuholníka:

kde je norma indukovaná skalárnym súčinom príslušného vektorového priestoru. Z tejto všeobecnejšej formulácie je možné odvodiť aj pôvodnú rovinnú verziu vety. Ak rovinu chápeme ako dvojrozmerný euklidovský priestor s obyčajným skalárnym súčinom a v trojuholníku s pravým uhlom pri vrchole označíme

potom vyplýva pôvodná Pythagorova veta zo vzťahu noriem vektorov (treba si uvedomiť, že v tomto prípade je norma vektoru len dĺžkou zodpovedajúcej strany).

Dôkazy Pytagorovej vety

Dôkazov Pytagorovej vety jestvuje veľmi veľa, uvádza sa až viac ako 300. Tu sú uvedené len niektoré z nich.

Dôkaz číslo 1

K dôkazu č. 1 – porovnanie obsahov štvorcov zložených dvomi spôsobmi

Ide o grafický dôkaz. Štvorec so stranou je možné zložiť dvomi spôsobmi (pozri obrázok):

  • zo štyroch pravouhlých trojuholníkov a dvoch štvorcov so stranami a
  • zo štyroch pravouhlých trojuholníkov a jedného štvorca so stranou .

Z rovnosti obsahov štvorca pri oboch spôsoboch zloženia vyplýva platnosť Pytagorovej vety.

Dôkaz číslo 2

Ide v podstate o zápis prvého dôkazu pomocou rovníc.

Obsah celého štvorca je možné vyjadriť dvomi spôsobmi:

  • Strana štvorca je zložená zo strán trojuholníka a . Pre jeho obsah teda platí:
.
  • Štvorec je tvorený štyrmi modrými pravouhlými trojuholníkmi a bielym štvorcom uprostred so stranou . Obsah celého štvorca je teda súčtom obsahov štyroch pravouhlých trojuholníkov () a bieleho štvorca so stranou c (). Obsah celého obrazca je daný vzorcom
.

Pretože ide v oboch prípadoch o ten istý štvorec, musí sa jeho obsah spočítaný obidvomi spôsobmi rovnať. Preto platí

a po úprave dostaneme Pytagorovu vetu v známom tvare

.

Dôkaz číslo 3

K dôkazu číslo 3 – podobnosť trojuholníkov

Je možné sa jednoducho presvedčiť, že ak sú zelenou farbou vyznačené uhly ( a , ktorý sa rovná uhlu ) zhodné, potom sú si trojuholníky navzájom podobné (veľkosti ich strán sú v rovnakom pomere a ich uhly sú zhodné).

Dôkaz podobnosti (rovnosti uhlov)

Súčet vnútorných uhlov každého trojuholníka je 180° ( ). Zároveň platí, že v pravouhlom trojuholníku musí byť práve jeden uhol pravý (t. j. 90°; pozri obrázok):

Zdroj: Wikipedia.org - čítajte viac o Pytagorova veta






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk