Obnovitelná energie - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Obnovitelná energie
 ...
Obnovitelná energie, zvláště fotovoltaické systémy a větrná energie zajišťují stále větší podíl kapacity na výrobě elektřiny.[1]
Větrná elektrárna na námořní základně USA v zátoce Guantanamo, Kuba

Obnovitelná energie je energie z obnovitelných zdrojů, které se přirozeně obnovují v lidském časovém měřítku. Mezi obnovitelné zdroje patří sluneční záření, vítr, pohyb vody a geotermální teplo.[2][3] Přestože většina obnovitelných zdrojů energie je udržitelná, některé nejsou. Například některé zdroje biomasy jsou při současné míře využívání považovány za neudržitelné.[4][5] Obnovitelná energie se často využívá k výrobě elektřiny, vytápění a chlazení. Projekty v oblasti obnovitelných zdrojů energie jsou obvykle rozsáhlé, ale jsou vhodné i pro venkovské a odlehlé oblasti a rozvojové země, kde je energie často klíčová pro rozvoj.[6][7] Obnovitelná energie se často nasazuje společně s další elektrifikací, která má několik výhod: elektřina může efektivně přemisťovat teplo nebo předměty a je čistá v místě spotřeby.[8][9]

V letech 2011 až 2021 vzrostl podíl obnovitelné energie na celosvětových dodávkách elektřiny z 20 % na 28 %. Využívání fosilní energie se snížilo z 68 % na 62 % a jaderné energie z 12 % na 10 %. Podíl vodní energie se snížil z 16 % na 15 %, zatímco energie ze slunce a větru vzrostla z 2 % na 10 %. Biomasa a geotermální energie vzrostly z 2 % na 3 %. Ve 135 zemích je instalováno 3 146 gigawattů, přičemž 156 zemí má zákony upravující odvětví obnovitelné energie.[10][11] V roce 2021 se podílela na celosvětovém nárůstu elektřiny z obnovitelných zdrojů téměř polovinou Čína.[12]

V celosvětovém měřítku je s odvětvím obnovitelných zdrojů energie spojeno více než 10 milionů pracovních míst, přičemž největším zaměstnavatelem v oblasti obnovitelných zdrojů je solární fotovoltaika.[13] Systémy obnovitelné energie se rychle stávají účinnějšími a levnějšími a jejich podíl na celkové spotřebě energie se zvyšuje,[14] přičemž velká většina celosvětově nově instalované kapacity elektrické energie je z obnovitelných zdrojů.[15] Ve většině zemí je nejlevnější nově postavenou elektřinou fotovoltaická solární nebo větrná energie na pevnině.[16]

V mnoha zemích světa se již obnovitelné zdroje energie podílejí na celkových dodávkách energie více než 20 %, přičemž v některých zemích se z obnovitelných zdrojů vyrábí více než polovina elektřiny.[17] V několika zemích se veškerá elektřina vyrábí z obnovitelných zdrojů.[18] Předpokládá se, že národní trhy s obnovitelnými zdroji energie budou v roce 2020 a v dalších letech nadále silně růst.[19] Podle Mezinárodní agentury pro energii (IEA) bude pro dosažení nulových čistých emisí do roku 2050 nutné, aby 90 % celosvětové výroby elektřiny pocházelo z obnovitelných zdrojů.[20] Některé studie ukázaly, že celosvětový přechod na 100% obnovitelnou energii ve všech odvětvích – energetice, teplárenství, dopravě a průmyslu – je proveditelný a ekonomicky životaschopný.[21][22][23] Obnovitelné zdroje energie existují v rozsáhlých zeměpisných oblastech, na rozdíl od fosilních paliv, která jsou soustředěna v omezeném počtu zemí. Zavádění technologií obnovitelných zdrojů energie a energetické účinnosti přináší významnou energetickou bezpečnost, zmírnění změny klimatu a ekonomické přínosy,[24] nicméně obnovitelným zdrojům energie brání stovky miliard dolarů dotací na fosilní paliva.[25] V mezinárodních průzkumech veřejného mínění mají obnovitelné zdroje energie, jako je solární a větrná energie, silnou podporu.[26][27] V roce 2022 Mezinárodní energetická agentura požádala země, aby vyřešily politické, regulační, povolovací a finanční překážky bránící přidávání dalších obnovitelných zdrojů energie, aby měly větší šanci dosáhnout do roku 2050 čistých nulových emisí uhlíku.[28]

Uhlí, ropa a zemní plyn zůstávají hlavními světovými zdroji energie i přesto, že obnovitelné zdroje energie začaly rychle růst.[29]

Úvod

Definice

Toky obnovitelné energie zahrnují přírodní jevy, jako je sluneční světlo, vítr, příliv a odliv, růst rostlin a geotermální teplo, jak vysvětluje Mezinárodní agentura pro energii:[30]

Obnovitelná energie pochází z přírodních procesů, které se neustále doplňují. V různých formách pochází přímo ze Slunce nebo z tepla generovaného hluboko v Zemi. Definice zahrnuje elektřinu a teplo vyrobené ze sluneční, větrné, oceánské, vodní energie, biomasy, geotermálních zdrojů a biopaliv a vodíku pocházejících z obnovitelných zdrojů.

Hnací síly a výhody

Obnovitelná energie je v protikladu k fosilním palivům, která se spotřebovávají mnohem rychleji, než se obnovují. Obnovitelné zdroje energie a významné příležitosti pro energetickou účinnost existují v rozsáhlých zeměpisných oblastech, na rozdíl od jiných zdrojů energie, které jsou soustředěny v omezeném počtu zemí. Rychlé zavádění obnovitelných zdrojů energie a energetické účinnosti a technologická diverzifikace energetických zdrojů by vedly k výrazným energetickým bezpečnostním a ekonomickým přínosům.[24] Solární a větrná energie výrazně zlevnila.[31] V některých případech bude přechod na tyto zdroje levnější než další využívání současných neefektivních fosilních paliv. Kromě toho je elektrifikace pomocí obnovitelných zdrojů energie účinnější, a proto vede k výraznému snížení potřeby primární energie.[32] Rovněž by se snížilo znečištění životního prostředí, jako je znečištění ovzduší způsobené spalováním fosilních paliv, a zlepšilo by se veřejné zdraví, snížila by se předčasná úmrtnost v důsledku znečištění a ušetřily by se související náklady na zdravotní péči, které by mohly dosáhnout bilionů dolarů ročně.[33][34][35][36] Četné analýzy strategií dekarbonizace zjistily, že kvantifikované zdravotní přínosy mohou významně kompenzovat náklady na provádění těchto strategií.[37][38]

Obavy ze změny klimatu spolu s pokračujícím poklesem nákladů na některá zařízení pro obnovitelné zdroje energie, jako jsou větrné turbíny a solární panely, jsou hnací silou většího využívání obnovitelných zdrojů energie.[37] nové vládní výdaje, regulace a politiky pomohly tomuto odvětví překonat globální finanční krizi lépe než mnohá jiná odvětví.[37] Od roku 2019 však podle Mezinárodní agentury pro obnovitelné zdroje energie musí celkový podíl obnovitelných zdrojů na skladbě zdrojů energie (včetně elektřiny, tepla a dopravy) růst šestkrát rychleji, aby se v tomto století udržel nárůst průměrné globální teploty „výrazně pod“ 2,0 °C ve srovnání s předindustriální úrovní.[38]

Rozsah

Solární panely a baterie v domácnosti, pokud je má, mohou být často využívány buď jen pro tuto domácnost, nebo v případě připojení k elektrické síti mohou být agregovány s miliony dalších.[39] Více než 44 milionů domácností využívá ke svícení a/nebo vaření bioplyn vyrobený v domácích fermentorech a více než 166 milionů domácností se spoléhá na novou generaci účinnějších sporáků na biomasu.[40] Podle výzkumu musí národ dosáhnout určitého bodu svého růstu, aby mohl více využívat obnovitelnou energii. Našimi slovy, její přidání změnilo způsob, jakým se klíčové vstupní faktory (práce a kapitál) vzájemně propojují, snížilo jejich celkovou elasticitu a zvýšilo zjevné úspory z rozsahu.[41]Osmý generální tajemník OSN Pan Ki-mun prohlásil, že obnovitelná energie má schopnost pozvednout nejchudší národy na novou úroveň prosperity.[42] Na národní úrovni se již nejméně 30 států na světě podílí obnovitelnou energií na dodávkách energie více než 20 %.[43] Ačkoli mnoho zemí má různé politické cíle pro dlouhodobější podíl obnovitelné energie, týkají se tyto cíle zpravidla pouze odvětví energetiky,[44] včetně cíle 40 % veškeré vyrobené elektřiny pro Evropskou unii do roku 2030.[45]

  • Výroba elektřiny

Bráno podle současného vývoje, pak by se do roku 2040 vyrovnala výroba elektřiny z obnovitených zdrojů s výrobou elektřiny z uhlí a zemního plynu. To je však nepřijatelné, vezmeme-li v úvahu výše uvedený požadavek IRENA na zvyšování podílu obnovitelných zdrojů. Několik zemí, například Dánsko, Německo, Jižní Austrálie a některých států USA, dosáhlo vysoké integrace různých obnovitelných zdrojů do elektrické sítě. Například v roce 2015 poskytovala větrná energie 42 % poptávky po elektřině v Dánsku, 23,2% v Portugalsku a 15,5% v Uruguayi. Vzájemné propojení elektrických sítí umožňují zemím vyvážit sítě tak, že vyrovnávají výkyvy v dodávkách energie. Mezi jednotlivými zeměmi a regiony začínají fungovat inovativní hybridní systémy.[46]

  • Vytápění

Solární ohřev vody je v mnoha zemích významným obnovitelným zdrojem, zejména v Číně, kde je instalováno přibližně 70 % celosvětové výrobní kapacity (180 GWth). Většina z těchto systémů je instalována v bytových domech pro více rodin a splňuje část potřeb teplé vody (asi 50–60 milionů domácností v Číně). Celkově instalované solární systémy na ohřev vody na celém světě poskytují část potřeb teplé vody u více než 70 milionech domácností. Stále také roste využívání biomasy k vytápění. Ve Švédsku je vytápěno více domácností biomasou, než ropou. Rychle roste i využití přímé geotermální energie pro vytápění.[47] Významnou úlohu začínají hrát také tepelná čerpadla, která zajišťují vytápění i chlazení a také vyrovnávají křivku poptávky po elektrické energii a v různých zemích začíná být národní prioritou.[48][49]

  • Doprava

Bioethanol je alkohol vyrobený fermentací, většinou ze sacharidů produkovaných v cukrech nebo škrobových plodinách, jako je kukuřice, cukrová třtina nebo čirok. Celulózová biomasa získávaná z nepotravinových zdrojů, jako jsou stromy a trávy, může být vhodnou pro výrobu ethanolu. Ethanol lze použít jako palivo pro vozidla v jeho čisté formě, ale obvykle se používá jako aditivum do benzinu ke zvýšení oktanového čísla a snížení emisí vozidel. Bioethanol je široce používán v USA a v Brazílii. Bionaftu lze použít jako palivo pro vozidla v čisté formě, ale obvykle se používá jako aditivum do nafty ke snížení emisí částic, oxidu uhelnatého a uhlovodíků ve vozidlech na naftu. Bionafta se vyrábí z olejů nebo tuků pomocí transesterifikace a je nejběžnějším biopalivem v Evropě.

Solární vozidlo je elektrické vozidlo poháněné zcela nebo z významné části přímou sluneční energií. Fotovoltaické články v solárních panelech obvykle přeměňují sluneční energii přímo na elektrickou energii. Solární energii lze také použít k zajištění energie pro komunikaci nebo ovládání nebo jiné pomocné funkce. Solární vozidla zatím nejsou použitelná pro každodenní přepravu, ale jsou to zatím demonstrační vozidla a technické prototypy, často sponzorované z veřejných peněz. Mezi známé příklady patří loď PlanetSolar a letadlo Solar Impulse. Velmi rozšířená jsou ale auta poháněná elektřinou, nabíjené elektřinou ze solárních zdrojů[50][51] a prodávají se lodě s výhradně solárním pohonem.[52]

Historie

Od začátku vývoje lidského druhu až do nedávné historie byly využívány prakticky pouze obnovitelné zdroje energie, protože jiné nebyly k dispozici. Až v posledních několika stoletích začali lidé využívat také fosilní zdroje – uhlí a ropu a ve 20. století také uran.[53] Využívání ohně, ve kterém se pálila biomase se datuje po více, než 120 000 let,[54] v roce 2810 př. n. l. je zdokumentováno využívání energie větru pro pohon plachetnic na Nilu a v Perském zálivu.[55] Geotermální energie z termálních pramenů byla využívána pro lázně již v paleolitu a k topení pak v Římské říši.[56]

V roce 2000 př. n. l. začali Číňané využívat rafinovanou ropu na topení a svícení, v roce 1000 př. n. l. pak objevili dřevěné uhlí, které používali jako palivo při výrobě oceli a přibližně od roku 200 př. n. l. začali používat zemní plyn pro dobývání soli z mořské vody. Také Římané začali přibližně od roku 500 př. n. l. používat ke svícení v domácnostech tzv. sicilský petrolej, tedy ropu. Přelomem ve využívání energie byl v roce 1769 vynález zdokonaleného parního stroje, který znamenal začátek průmyslové revoluce. Pro pohon parního stroje začalo být intenzivně využíváno uhlí a nastala i jeho masivní těžba. I když využití uhlí je zdokumentováno již v dávné historii lidmi, kteří žili v jeskyních, výraznější použití je zdokumentováno v letech 200–100 př. n. l. Římany v Anglii, ve 14 . století pak indiány Hopi v Americe.[57][58][59]

První obavy o vyčerpání fosilních zdrojů energie se objevily již v 19. století. V roce 1873 napsal profesor Augustin Mouchot:

Přijde čas, kdy evropský průmysl přestane mít dostatek potřebných přírodních zdrojů energie. Ropné prameny a uhelné doly nejsou nevyčerpatelné, ale na mnoha místech se rychle vyčerpávají. Vrátí se pak člověk k síle vody a větru? Nebo se přesune tam, kde nejsilnější zdroj tepla vysílá své paprsky na všechny? Historie ukáže, co přijde…[60]

V roce 1885, po objevu fotovoltaického jevu, předpověděl Werner von Siemens jeho praktické použití při výrobě energie.[61] V roce 1905 zmiňoval konec fosilních paliv Max Weber v závěru své knihy Protestantská etika a duch kapitalismu.[62] V roce 1956 byla publikována teorie ropného zlomu.[63] V 70. letech 20. století podporovali ekologové rozvoj obnovitelné energie jako náhradu za případné vyčerpání ropy a jako možnost ukončení závislosti na ropě; objevily se první větrné turbíny vyrábějící elektřinu. Solární systémy se dlouho používaly k vytápění a chlazení, do roku 1980 byly fotovoltaické panely příliš drahé, aby byly běžně používány jako zdroj elektřiny.[64]

Definice v zákonech v České republice

Definice obnovitelného zdroje podle českého zákona č. 17/1992 Sb. o životním prostředí je: „Obnovitelné přírodní zdroje mají schopnost se při postupném spotřebovávání částečně, nebo úplně obnovovat, a to samy, nebo za přispění člověka.“[65]

Definice podle zákona č. 165/2012 Sb. o podporovaných zdrojích energie: „obnovitelnými zdroji obnovitelné nefosilní přírodní zdroje energie, jimiž jsou energie větru, energie slunečního záření, geotermální energie, energie vody, energie půdy, energie vzduchu, energie biomasy, energie skládkového plynu, energie kalového plynu z čistíren odpadních vod a energie bioplynu.“[66]

Hlavní technologie

Větrná energie

Větrné elektrárny v Jindřichovicích pod Smrkem
Podrobnější informace naleznete v článku Větrná energie.

Na konci roku 2019 v celosvětovém měřítku instalovaný výkon větrných elektráren 651 GW, proti roku 2018 došlo k nárůstu o 10 %.[67] V Česku byl v roce 2019 instalovaný výkon větrných elektráren 337 MW.[68] V Evropě bylo v roce 2019 vyráběno z větru 15 % elektrické energie.[69]

Proud vzduchu lze použít k provozu větrných turbín. Moderní průmyslově vyráběné větrné turbíny mají jmenovitý výkon od 600 kW do 9 MW. Energie dostupná z větru je kvadratickou funkcí rychlosti větru, takže jak se zvyšuje rychlost větru, zvyšuje se výkon až na maximální výkon pro konkrétní turbínu.[70] Optimální místa pro umístění větrných turbín jsou místa, kde je vítr stálý a silný – vyšší polohy a také širé moře. Plný výkon dosahují větrné turbíny typicky po 16 až 57 % času, ale v případě míst na širém moři může být toto procento vyšší.[71]

Pokud by byly překonány všechny překážky, předpokládá se celosvětově, že technický potenciál větrné energie by byl 5krát vyšší, než světové produkce energie, resp. 40 x vyšší, než poptávka po elektřině. To by vyžadovalo, aby byly větrné turbíny instalovány na velkých plochách, zejména v oblastech s vyššími intenzitami větru, například na moři.[72] Pro Českou republiku odhaduje studie AV ČR celkový realizovatelný potenciál větrné energie na přibližně 15 GW,[73] což by mohlo pokrýt přibližně 31 % celkové spotřeby elektřiny.[74]

Větrné turbíny na moři mají, ze všech energetických zdrojů, nejnižší uhlíkovou stopu, pokud počítáme celkový životní cyklus.[75]

Vodní energie

Podrobnější informace naleznete v článku Vodní energie.
Malá vodní elektrárna Mířejovice

Vodní energie je technicky využitelná potenciální, kinetická nebo tepelná energie veškerého vodstva na Zemi. Jde o velmi využívaný obnovitelný zdroj energie. Nejvíce se v dnešní době využívá přeměny ve vodních elektrárnách na elektrickou energii.

Vodní energie se využívá již od starověku. Nejprve to bylo k dopravě (splavování lodí a vorů či dřeva po proudu řek), později k pohonu strojů (mlýnů, hamrů, čerpadel – například vodního trkače – a pil). K rozšíření jejího využívání v Evropě došlo v období středověku zásluhou mnišských řádů, jejichž kláštery ji nejen hojně využívaly, ale též si mezi sebou relativně rychle předávaly vylepšení zvyšující efektivitu jejího využití. Převažujícím způsobem využití vodní energie se později stala výroba elektřiny. První vodní elektrárna byla postavena v Appletonu ve státě Wisconsin ve Spojených státech amerických v roce 1882.

Na konci roku 2019 byla celosvětová kapacita vodní energie 1 190 GW.[76]

S ohledem na to, že voda je asi 800krát hustší než vzduch, může i pomalý proud vody nebo mírny vzestup moře přinést značné množství energie. Existuje mnoho forem vodní energie:

  • Historicky pochází vodní elektrická energie z velkých energetických přehrad a nádrží, které jsou stále populární v rozvojových zemích.[77] Největší z nich je přehrada Tři soutěsky v Číně (dokončená v roce 2003) a přehrada Itaipú, ležící na řece Paraná, na hranicích Brazílie a Paraguaye (dokončená v roce 1984).
  • Malé vodní elektrárny mají ve světě typicky instalovaný výkon do 50 MW (v Česku 10 MW).[78] Typicky jsou budovány na menších tocích, v málo rozvinutých zemích i na velkých řekách. V samotné Číně funguje přes 45 000 malých vodních elektráren.[79]
  • Průtočné vodní elektrárny pracují bez akumulace vody, takže přítok nad příslušným jezem a odtok pod elektrárnou jsou v běžném provozu stejné. Tyto elektrárny mohou vyrobit velké množství elektřiny. Příkladem je Přehrada náčelníka Josefa na řece Columbia.[80][81]

Vodní energie se vyrábí ve 150 zemích, přičemž v asijsko-pacifickém regionu generovala v roce 2010 celkem 32 procent celosvětové vodní energie. V zemích s největším podílem elektřiny z obnovitelných zdrojů je v 50 předních primárně z vodních elektráren. Čína je největším výrobcem vodních elektráren s produkcí 721 terawatthodin v roce 2010, což představuje přibližně 17 procent domácí spotřeby elektřiny. Tři vodní elektrárny mají výkon větší než 10 GW: přehrada Tři soutěsky v Číně, přehrada Itaipú na hranici Brazílie a Paraguae a přehrada Guri ve Venezuele.[82]

Energie mořského vlnění, která využívá energii povrchových oceánských vln, a přílivová energie, která přeměňuje energii přílivu a odlivu, jsou dvě formy vodní energie u kterých se očekává budoucí potenciál[jaký?; dosud však nemají rozsáhlejší komerční využití. Na pobřeží státu Maine funguje demonstrační projekt provozovaný společností Ocean Renewable Power Company na pobřeží Maine. Tento projekt využívá přílivovou energii ze zálivu Fundy, kde se nachází největší příliv na světě. Dalším zdrojem energie by mohla být přeměna tepelné energie, která využívá teplotní rozdíl mezi chladnější v hloubce a teplejší povrchovou vodou; zatím však (v roce 2020) není takovýto projekt ekonomicky realizovatelný.[83][84][85]

Kapacita obnovitelných zdrojů energie neustále roste, v čele s fotovoltaickou energií.[86]

Sluneční energie

Fotovoltaické články a solární kolektory, moštárna Hostětín
Podrobnější informace naleznete v článku Solární energie.
Globální kapacita výroby elektřiny 1053 GW (2022)[87]
Roční tempo růstu globální kapacity výroby elektřiny 25 % (2013–2022)[88]
Podíl na celosvětové výrobě elektřiny 4,5 % (2022)[89]
Levelizované náklady na megawatthodinu Fotovoltaika pro veřejné účely: 38 343 USD (2019)[90]
Primární technologie Fotovoltaika, koncentrovaná solární energie, solární termální kolektor
Další energetické aplikace Ohřev vody; vytápění, větrání a klimatizace; vaření; technologické teplo; úprava vody.

Sluneční energie patří mezi hlavní zdroje obnovitelné energie.[91] Na Slunci probíhají již několik miliard let termonukleární reakce. Těmito reakcemi se přeměňuje sluneční vodík (který obnovován není) na helium za uvolnění velkého množství energie. Ze Slunce je energie předávána na Zem ve formě záření. Energetický příkon ze Slunce je ve vzdálenosti, v níž se nachází Země, přibližně 1300 W/m2. Tento výkon se označuje jako solární konstanta. V ČR dopadá za rok průměrně 1100 kWh/m2. Pokud se tato energie přeměňuje technickým zařízením (sluneční kolektor, fotovoltaický článek) přímo, mluvíme obvykle o sluneční energii.

Na konci roku 2019 byla celosvětová kapacita solární energie 586 GW.[76]

Solární energie, sálavé světlo a teplo ze Slunce, je využívána pomocí řady neustále se vyvíjejících technologií, jako je solární ohřev, fotovoltaika, koncentrovaná solární energie (CSP), koncentrační fotovoltaika (CPV), solární architektura a umělá fotosyntéza.[92][93] Solární technologie často dělíme na pasivní nebo aktivní v závislosti na způsobu, jakým zachycují, převádějí a distribuují sluneční energii. Pasivní solární techniky zahrnují orientaci budovy vzhledem ke Slunci, výběr materiálů s příznivými izolačními vlastnostmi nebo rozptylem světla a navrhování prostorů, ve kterých přirozeně cirkuluje vzduch. Aktivní solární technologie zahrnují solární tepelnou energii využívající solární kolektory k vytápění a solární energii, přeměňující sluneční světlo na elektřinu buď přímo pomocí fotovoltaiky (PV), nebo nepřímo pomocí koncentrované solární energie (CSP).

Geotermální energie

Geotermální elektrárna na Islandu
Podrobnější informace naleznete v článku Geotermální energie.

Geotermální energie je přirozený projev tepelné energie zemského jádra, která má původ ve zbytkovém teplu planety Země, vzniká rozpadem radioaktivních látek nebo působením slapových sil. Jejími projevy jsou erupce sopek a gejzírů, horké prameny či parní výrony.[94][95] Využívá se ve formě tepelné energie (pro vytápění nebo i chlazení), či pro výrobu elektrické energie v geotermálních elektrárnách. Řadí se mezi obnovitelné zdroje energie, avšak nemusí to platit vždy – některé zdroje geotermální energie se mohou vyčerpat v horizontu desítek let, protože rychlost proudění tepla je menší, než rychlost jeho odčerpávání.[96]

Nízkoteplotní geotermální energie[97] označuje použití vnější kůry Země jako tepelné baterie k uskladnění obnovitelné tepelné energie pro vytápění a chlazení budov a pro další chladicí a průmyslové použití. V této formě geotermální energie se geotermální tepelné čerpadlo a zemní výměník tepla používají k uskladnění tepelné energie do Země (pro chlazení) a ze Země (pro vytápění) – podle ročního období. Nízkoteplotní geotermální energie je stále důležitější obnovitelnou technologií, protože jednak snižuje celkovou roční energetickou zátěž spojenou s vytápěním a chlazením, jednak vyrovnává křivku elektrické poptávky a eliminuje extrémní letní a zimní špičkové požadavky na dodávku elektřiny.[98]

Na konci roku 2019 byla celosvětová kapacita geotermální energie 14 GW.[76]

Bioenergie

Podrobnější informace naleznete v článcích Bioenergie, Biomasa, Bioplyn a Biopalivo.
Bioplynová stanice Poděbrady

Biomasa je biologický materiál pocházející ze živých nebo nedávno živých organismů. Nejčastěji se jedná o rostliny nebo materiály pocházející z rostlin, které se konkrétně nazývají lignocelulózová biomasa.[99] Jako zdroj energie může být biomasa použita buď přímo spalováním k výrobě tepla, nebo nepřímo po její přeměně na různé formy biopaliva. Konverze biomasy na biopalivo může být dosažena různými metodami, které se dělí na termální, chemické a biochemické metody. Největším zdrojem energie z biomasy zůstává dřevo.[100] Dřevní biomasa může být tvořena zbytky lesů – jako jsou uschlé stromy, větve a pařezy, odřezky ze zpracování dřeva, dřevní štěpka a piliny. Nedřevní biomasa zahrnuje veškerou rostlinnou nebo živočišnou hmotu, kterou lze přeměnit na vlákna nebo jiné průmyslové látky, včetně biopaliv. Průmyslová biomasa lze získat pěstováním z mnoha druhů rostlin, včetně trávy ozdobnice, prosa, konopí, kukuřice, topolu, vrby, čiroku, cukrové třtiny, bambusu a různých druhů stromů, od eukalyptu po olejné palmy.[101]

Biomasu lze přeměnit na jiné využitelné formy energie, jako je plynný methan[102] nebo paliva pro dopravu, jako jsou ethanol a bionafta. Při rozkladu odpadků, zemědělského odpadu a lidských exkrementů vzniká plynný methan – nazývaný také skládkový plyn nebo bioplyn. Plodiny, jako jsou kukuřice a cukrová třtina, lze fermentovat za vzniku ethanolu. Bionaftu, další palivo pro dopravu, lze vyrábět také ze zbytků potravinářských produktů, jako jsou rostlinné oleje a živočišné tuky.[103][104] Nadále jsou zkoumány možnosti zkapalňování biomasy a celulosového ethanolu.[105][106]

Na konci roku 2019 byla celosvětová kapacita bioenergie 124 GW.[76]

Nové technologie

Existují také další technologie obnovitelné energie, které jsou stále ve vývoji, včetně celulózového etanolu, geotermální energie z horkých a suchých hornin a energie z mořských zdrojů. Tyto technologie zatím nejsou široce využívány nebo mají omezenou komerční využitelnost.[107] Některé z nich mohou mít potenciál srovnatelný s jinými technologiemi obnovitelné energie, ale stále závisí na tom, zda se jim dostane dostatečné pozornosti a zda budou financovány z prostředků na výzkum, vývoj a demonstrace.[107]

V akademickém, federálním a komerčním sektoru existuje řada organizací, které provádějí rozsáhlý pokročilý výzkum v oblasti obnovitelných zdrojů energie. Tento výzkum zahrnuje několik oblastí zaměření napříč spektrem obnovitelných zdrojů energie. Většina výzkumu je zaměřena na zlepšení účinnosti a zvýšení celkových energetických výnosů.[108] V posledních letech se na obnovitelné zdroje energie zaměřilo více výzkumných organizací podporovaných vládou. Dvě nejvýznamnější z nich jsou Sandia National Laboratories a National Renewable Energy Laboratory (NREL), které jsou financovány Ministerstvem energetiky Spojených států a podporovány různými firemními partnery.[109]

Využití obnovitelných zdrojů

V roce 2006 pocházelo asi 18 % celosvětově vyprodukované energie ze zdrojů, označovaných jako obnovitelné. Většina z toho (13 % celkové spotřeby) pochází z tradiční biomasy (především pálení dřeva). Vodní energie, poskytující 3 % celkové spotřeby primární energie, byla druhý největší obnovitelný zdroj. Moderní technologie, využívající geotermální energii, větrnou energii, sluneční energii a energii přílivu dohromady poskytovaly asi 0,8 % z celkové výroby.

V březnu roku 2007 se představitelé Evropské unie dohodli, že v roce 2020 má být 20 % energie členských států vyráběno z obnovitelných zdrojů, aby se omezily emise oxidu uhličitého, který je považován za původce globálního oteplování. Investování do obnovitelné energie si vyžádalo náklady ve výši z 80 miliard amerických dolarů v roce 2005[zdroj? a v následujícím roce náklady ve výši 100 miliard amerických dolarů.[zdroj?

Německo v roce 2018 pokrylo 38,2% a v roce 2019 již 42,6% své hrubé spotřeby elektřiny z obnovitelných zdrojů.[110]

Za použití elektřiny z obnovitelných zdrojů se vyrábí tzv. zelený vodík.[111][112]

V roce 2020 poprvé překonal objem vytvořené elektrické energie v EU z obnovitelných zdrojů energie z fosilních paliv. Z obnovitelných zdrojů pocházelo 38 % elektřiny.[113]

Možné konflikty a negativa

Celosvětově rozvoj obnovitelných zdrojů si může vyžádat zvýšenou spotřebu některých kovů o 5 až 18 % ročně po dobu následujících 40 let.[114] Geotermální zdroje a vodní nádrže mohou způsobovat zemětřesení.[115][116] Přehradní nádrže mohou být zdrojem skleníkových plynů, především metanu,[117] jejich skutečná úloha ale zatím není dostatečně objasněna.[118] Výstavba obnovitelných zdrojů energie může být v některých případech zdrojem sociálních i environmentálních konfliktů, což je dokumentováno především v případě výstavby nových přehrad.[119]

Výstavbě OZE se veřejnost často brání pomocí místních referend. Od roku 2022 tak nařízení EU stanovilo, že výstavba OZE je převažující veřejný zájem (například nad estetičností krajiny) a platí vyvratitelná domněnka při povolování jejich výstavby (důkazní břemeno je na odpůrcích OZE).[120]

Obnovitelná energie v Česku

Větrné elektrárny v Česku

Obnovitelné zdroje energie jsou podporovány různými dotacemi nebo zvýhodněnými výkupními cenami energie. V České republice je elektřina z obnovitelných zdrojů podporována garantovanými výhodnými výkupními cenami nebo formou tzv. zelených bonusů. Z těchto dvou variant může každý vlastník elektrárny, která využívá obnovitelné zdroje energie, volit. V letech 20052011 činila podpora obnovitelných zdrojů energie 54,4 mld. Kč, kombinovaná výroba elektřiny a tepla 4,2 mld. Kč a druhotné zdroje energie 0,6 mld. Kč (celkem tedy téměř 60 miliard korun).[121]

Nepřímá podpora fosilních zdrojů činila za totéž období 76,3 miliardy korun (uhlí 55,3 mld. Kč, ropa 14,2 mld. Kč, zemní plyn 6,8 mld. Kč). Z toho přibližně polovina (37 mld) sloužila k likvidaci zátěží, vzniklých před rokem 1994.[122]

Podíl obnovitelných zdrojů na celkové primární energii i na výrobě elektřiny činil v České republice přitom ve stejném období přibližně 3–10 % (jejich podíl v tom období rostl – proto rozptyl v podílu).

Mezi obnovitelnými zdroji Skupiny ČEZ mají největší podíl na výrobě elektřiny vodní elektrárny. Instalovaný výkon vodních elektráren Skupiny ČEZ činil koncem roku 2018 v České republice 1 961,1 MW.[123]

Reference

V tomto článku byl použit překlad textu z článku Renewable energy na anglické Wikipedii.

  1. Share of cumulative power capacity by technology, 2010-2027 – Charts – Data & Statistics. IEA . . Dostupné online. (anglicky) 
  2. OWUSU, Phebe Asantewaa; ASUMADU-SARKODIE, Samuel. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering. 2016-12-31, roč. 3, čís. 1, s. 1167990. Dostupné online . ISSN 2331-1916. DOI 10.1080/23311916.2016.1167990. (anglicky) 
  3. ELLABBAN, Omar; ABU-RUB, Haitham; BLAABJERG, Frede. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews. 2014-11, roč. 39, s. 748–764. Dostupné online . DOI 10.1016/j.rser.2014.07.113. (anglicky) 
  4. PEARCE, Rosamund. Biomass subsidies 'not fit for purpose', says Chatham House. Carbon Brief . 2017-02-23 cit. 2023-09-29. Dostupné online. (anglicky) 
  5. NEWS, Chelsea Harvey,Niina Heikkinen,E&E. Congress Says Biomass Is Carbon-Neutral, but Scientists Disagree. Scientific American online. cit. 2023-09-29. Dostupné online. (anglicky) 
  6. ALAZRAQUE-CHERNI, Judith. Renewable Energy for Rural Sustainability in Developing Countries. Bulletin of Science, Technology & Society. 2008-04, roč. 28, čís. 2, s. 105–114. Dostupné online cit. 2023-09-29. ISSN 0270-4676. DOI 10.1177/0270467607313956. (anglicky) 
  7. World Energy Assessment: Energy and the Challenge of Sustainability | United Nations Development Programme. UNDP online. cit. 2023-09-29. Dostupné online. (anglicky) 
  8. ARMAROLI, Nicola; BALZANI, Vincenzo. Towards an electricity-powered world. Energy & Environmental Science. 2011, roč. 4, čís. 9, s. 3193. Dostupné online cit. 2023-09-29. ISSN 1754-5692. DOI 10.1039/c1ee01249e. (anglicky) 
  9. ARMAROLI, Nicola; BALZANI, Vincenzo. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. Chemistry – A European Journal. 2016-01-04, roč. 22, čís. 1, s. 32–57. Dostupné online cit. 2023-09-29. ISSN 0947-6539. DOI 10.1002/chem.201503580. (anglicky) 
  10. REN21. REN21 Renewables Global Status Report online. 2019-06-14 cit. 2023-09-29. Dostupné online. (anglicky) 
  11. REN21. Renewables 2011 – Global Status Report online. cit. 2023-09-29. Dostupné online. [nedostupný zdroj
  12. Renewables – Global Energy Review 2021 – Analysis. IEA online. cit. 2023-09-29. Dostupné online. (anglicky) 
  13. Renewable Energy and Jobs Annual Review 2020. www.irena.org online. 2020-09-29 cit. 2023-09-29. Dostupné online. (anglicky) 
  14. MOTYKA, Marlene; AMON, Carolyn; SLAUGHTER, Andrew. Global renewable energy trends. Deloitte Insights online. cit. 2023-09-29. Dostupné online. (anglicky) 
  15. Renewable Energy Now Accounts for a Third of Global Power Capacity. www.irena.org online. 2019-04-02 cit. 2023-09-29. Dostupné online. (anglicky) 
  16. Renewables 2020 – Analysis. IEA online. cit. 2023-09-29. Dostupné online. (anglicky) 
  17. RITCHIE, Hannah; ROSER, Max; ROSADO, Pablo. Energy. Our World in Data. 2022-10-27. Dostupné online cit. 2023-09-29. 
  18. SENSIBA, Jennifer. Some Good News: 10 Countries Generate Almost 100% Renewable Electricity. CleanTechnica online. 2021-10-28 cit. 2023-09-29. Dostupné online. (anglicky) 
  19. Renewables 2010 – Global Status Report online. REN21 cit. 2023-09-29. Dostupné online. 
  20. Net Zero by 2050 – Analysis. IEA online. cit. 2023-09-29. Dostupné online. (anglicky) 
  21. BOGDANOV, Dmitrii; GULAGI, Ashish; FASIHI, Mahdi. Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Applied Energy. 2021-02, roč. 283, s. 116273. Dostupné online cit. 2023-09-29. DOI 10.1016/j.apenergy.2020.116273. (anglicky) 
  22. Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios with Non-energy GHG Pathways for +1.5°C and +2°C. Příprava vydání Sven Teske. Cham: Springer International Publishing Dostupné online. ISBN 978-3-030-05842-5, ISBN 978-3-030-05843-2. DOI 10.1007/978-3-030-05843-2. (anglicky) DOI: 10.1007/978-3-030-05843-2. 
  23. JACOBSON, Mark Z.; VON KRAULAND, Anna-Katharina; COUGHLIN, Stephen J. Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries. Energy & Environmental Science. 2022, roč. 15, čís. 8, s. 3343–3359. Dostupné online cit. 2023-09-29. ISSN 1754-5692. DOI 10.1039/D2EE00722C. (anglicky) 
  24. a b Energy Technology Perspectives 2012. webstore.iea.org online. EIA, 2020-05-28 cit. 2023-09-29. Dostupné v archivu pořízeném z originálu dne 2020-05-28. 
  25. TIMPERLEY, Jocelyn. Why fossil fuel subsidies are so hard to kill. Nature. 2021-10-21, roč. 598, čís. 7881, s. 403–405. Dostupné online cit. 2023-09-29. ISSN 0028-0836. DOI 10.1038/d41586-021-02847-2. (anglicky) 
  26. https://web.archive.org/web/20160304114134/http://www.unep.org/pdf/72_Glob_Sust_Energy_Inv_Report_(2007).pdf online. UNEP cit. 2023-09-29. Dostupné v archivu pořízeném dne 2016-03-04. 
  27. SÜTTERLIN, Bernadette; SIEGRIST, Michael. Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power. Energy Policy. 2017-07, roč. 106, s. 356–366. Dostupné online cit. 2023-09-29. DOI 10.1016/j.enpol.2017.03.061. (anglicky) 
  28. Executive summary – Renewables 2022 – Analysis. IEA online. cit. 2023-09-29. Dostupné online. (anglicky) 
  29. FRIEDLINGSTEIN, Pierre; JONES, Matthew W.; O'SULLIVAN, Michael. Global Carbon Budget 2019. Earth System Science Data. 2019-12-04, roč. 11, čís. 4, s. 1783–1838. Dostupné online cit. 2023-09-29. ISSN 1866-3508. DOI 10.5194/essd-11-1783-2019. (English) 
  30. IEA. Renewable Energy... ... into the Mainstream online. IEA, 2002 cit. 2020-12-09. Dostupné v archivu pořízeném dne 2021-03-19. 
  31. IPCC AR6 WG3 SPM 2022
  32. QUASCHNING, Volker. Regenerative Energiesysteme: Technologie - Berechnung - Simulation. 9., aktualisierte und erweiterte Auflage. vyd. München: Hanser 444 s. ISBN 978-3-446-44267-2, ISBN 978-3-446-44333-4. 
  33. JACOBSON, Mark Z.; DELUCCHI, Mark A.; BAZOUIN, Guillaume. 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy & Environmental Science. 2015, roč. 8, čís. 7, s. 2093–2117. Dostupné online cit. 2023-09-29. ISSN 1754-5692. DOI 10.1039/C5EE01283J. (anglicky) 
  34. SCOVRONICK, Noah; BUDOLFSON, Mark; DENNIG, Francis. The impact of human health co-benefits on evaluations of global climate policy. Nature Communications. 2019-05-07, roč. 10, čís. 1. Dostupné online cit. 2023-09-29. ISSN 2041-1723. DOI 10.1038/s41467-019-09499-x. PMID 31064982. (anglicky) 
  35. GALLAGHER, Ciaran L.; HOLLOWAY, Tracey. Integrating Air Quality and Public Health Benefits in U.S. Decarbonization Strategies. Frontiers in Public Health. 2020-11-19, roč. 8. Dostupné online cit. 2023-09-29. ISSN 2296-2565. DOI 10.3389/fpubh.2020.563358. PMID 33330312. 
  36. LUDERER, Gunnar; PEHL, Michaja; ARVESEN, Anders. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nature Communications. 2019-11-19, roč. 10, čís. 1, s. 5229. Dostupné online cit. 2023-09-29. ISSN 2041-1723. DOI 10.1038/s41467-019-13067-8. PMID 31745077. (anglicky) 
  37. a b c MAKOWER, Joel; PERNICK, Ron; WILDER, Clint. Clean Energy Trends 2009 online. CleanEdge, 2009-03 cit. 2023-09-29. Dostupné v archivu pořízeném dne 2009-03-18. 
  38. a b Global energy transformation: A roadmap to 2050 (2019 edition). www.irena.org online. 2019-04-08 cit. 2023-09-29. Dostupné online. (anglicky) 
  39. Getting the most out of tomorrow’s grid requires digitisation and demand response. The Economist. Dostupné online cit. 2023-09-29. ISSN 0013-0613. 
  40. Renewables 2011 – Global Status Report online. cit. 2023-09-29. Dostupné online. 
  41. MAKIEŁA, Kamil; MAZUR, Błażej; GŁOWACKI, Jakub. The Impact of Renewable Energy Supply on Economic Growth and Productivity. Energies. 2022-06-30, roč. 15, čís. 13, s. 4808. Dostupné online cit. 2023-09-29. ISSN 1996-1073. DOI 10.3390/en15134808. (anglicky) 
  42. RENEWABLEENERGYWORLDCONTENTTEAM. U.N. Secretary-General: Renewables Can End Energy Poverty online. 2011-08-25 cit. 2023-09-29. Dostupné online. (anglicky) [nedostupný zdroj
  43. Renewable Energy by Country 2023. worldpopulationreview.com online. cit. 2023-09-29. Dostupné online. 
  44. REN21. RENEWABLES 2021 GLOBAL STATUS REPORT. www.ren21.net online. cit. 2023-09-29. Dostupné online. (anglicky) 
  45. ABNETT, Kate. European Commission analysing higher 45% renewable energy target for 2030. Reuters. 2022-04-20. Dostupné online cit. 2023-09-29. (anglicky) 
  46. REN21. Renewables 2020 Global Status Report online. REN21, 2020 cit. 2020-12-02. Dostupné online. 
  47. CCBDA Fast Growth for Copper-Based Geothermal Heating & Cooling. en.coppercanada.ca online. cit. 2020-12-09. Dostupné v archivu pořízeném z originálu dne 2019-04-26. 
  48. Geothermal Heat Pumps. Energy.gov online. cit. 2020-12-09. Dostupné online. (anglicky) 
  49. Net Zero Foundation — Leading to the Age of Free Energy. Intelli Products online. cit. 2020-12-09. Dostupné online. 
  50. Solar Powered Electric Car (EV) Charging Station. EmPower Solar online. cit. 2020-12-09. Dostupné online. (anglicky) 
  51. Solar-Powered Cars: Could They Play a Role in the Future? online. 2020-08-31 cit. 2020-12-09. Dostupné online. (anglicky) 
  52. Getting to Zero Coalition. www.globalmaritimeforum.org online. cit. 2020-12-09. Dostupné online. 
  53. Historie a perspektivy OZE - úvod. TZB-info online. cit. 2020-12-03. Dostupné online. 
  54. HIRST, K. Krist. When Did People Begin Using Fire?. ThoughtCo online. cit. 2020-12-11. Dostupné online. (anglicky) 
  55. DARLING, David. wind energy. www.daviddarling.info online. cit. 2020-12-11. Dostupné online. 
  56. Geothermal Energy. faculty.fairfield.edu online. cit. 2020-12-11. Dostupné online. 
  57. Fosil Energy Study Guide online. cit. 2020-12-03. Dostupné v archivu pořízeném dne 2021-04-21. 
  58. Energyland - History of Energy Use. www.emsd.gov.hk online. cit. 2020-12-03. Dostupné online. 
  59. Historie využívání energie | Vítejte na Zemi. www.cittadella.cz online. cit. 2020-12-03. Dostupné v archivu pořízeném dne 2021-02-28. 
  60. KOVARIK, Bill. History of sustainable energy online. 2011-03-29 cit. 2020-12-11. Dostupné online. (anglicky) 
  61. SIEMENS, Werner. On the electro motive action of illuminated selenium, discovered by Mr. Fritts, of New York. Journal of the Franklin Institute. 1885-06, roč. 119, čís. 6, s. 453–IN6. Dostupné online cit. 2020-12-11. DOI 10.1016/0016-0032(85)90176-0. (anglicky) 
  62. ZENO. Soziologie im Volltext: Max Weber: Gesammelte Aufsätze zur Religionssoziologie. Band 1, Tübingen .... www.zeno.org online. cit. 2020-12-11. Dostupné online. (německy) 
  63. HUBERT, M. King. Nuclear energy and fossil fuels online. 1956 cit. 2020-12-11. Dostupné online. 
  64. History of PV Solar. web.archive.org online. 2013-12-06 cit. 2020-12-11. Dostupné v archivu pořízeném z originálu dne 2013-12-06. 
  65. Platná legislativa - Zákon o životním prostředí. www.mzp.cz online. cit. 2019-03-13. Dostupné online. 
  66. 165/2012 Sb. Zákon o podporovaných zdrojích energie a o změně některých zákonů. www.zakonyprolidi.cz online. cit. 2019-03-13. Dostupné online. 
  67. Global Wind Energy Council online. 2020-03-19 cit. 2020-12-11. Dostupné online. (anglicky) 
  68. Renewable Capacity Statistics 2020. /publications/2020/Mar/Renewable-Capacity-Statistics-2020 online. cit. 2020-12-11. Dostupné online. (anglicky) 
  69. Eind Energy in Europe in 2019 online. Wind Europe, 2020 cit. 2020-12-11. Dostupné online. 
  70. Wind Energy - The Facts (Executive Summary) online. EWEA cit. 2020-12-11. Dostupné online. 
  71. Erneuerbare Energien in Österreich Systemtechnik, Potenziale, Wirtschaftlichkeit, Umweltaspekte. Wien: s.n. XX, 499 S s. Dostupné online. ISBN 3-211-83579-2, ISBN 978-3-211-83579-1. OCLC 231867355 
  72. Global wind power at 80 m. web.stanford.edu online. cit. 2020-12-11. Dostupné online. 
  73. HANSLIAN, David. Aktualizace potenciálu větrné energie v České republice z perspektivy roku 2020 online. Praha: Ústav fyziky atmosféry AV ČR, v.v.i., 2020 cit. 2020-12-11. Dostupné online. 
  74. Potenciál obnovitelných zdrojů v České republice: Větrné elektrárny. CZECHSIGHT - Vše o českém a zahraničním techu online. 2020-10-30 cit. 2020-12-11. Dostupné online. 
  75. Life Cycle Assessment Harmonization. www.nrel.gov online. cit. 2020-12-01. Dostupné online. (anglicky) 
  76. a b c d Renewable Capacity Statistics 2020. /publications/2020/Mar/Renewable-Capacity-Statistics-2020 online. cit. 2020-12-25. Dostupné online. (anglicky) 
  77. MORAN, Emilio F.; LOPEZ, Maria Claudia; MOORE, Nathan. Sustainable hydropower in the 21st century. Proceedings of the National Academy of Sciences. 2018-11-20, roč. 115, čís. 47, s. 11891–11898. Dostupné online cit. 2020-12-25. ISSN 0027-8424. DOI 10.1073/pnas.1809426115. PMID 30397145. (anglicky) 
  78. CRETTENAND, Nicolas. The Facilitation of Mini and Small Hydropower in Switzerland:Shaping the Institutional Framework (with a Particular Focus on Storage and Pumped-Storage Schemes). infoscience.epfl.ch. 2012. Dostupné online cit. 2020-12-25. DOI 10.5075/EPFL-THESIS-5356. (anglicky) 
  79. The Outlook for Small Hydropower in China online. 2015-01-01 cit. 2020-12-25. Dostupné online. (anglicky) 
  80. Run-of-the-river hydroelectricity - Energy Education. energyeducation.ca online. cit. 2020-12-25. Dostupné online. (anglicky) 
  81. Run of River Power - Energy BC. energybc.ca online. cit. 2020-12-25. Dostupné online. 
  82. Use and Capacity of Global Hydropower Increases. www.energy-daily.com online. cit. 2020-12-25. Dostupné online. 
  83. Wave energy pros and cons. Solar Reviews online. cit. 2020-12-26. Dostupné online. (anglicky) 
  84. Wave power energy: The top five trends impacting the sector in 2019. www.power-technology.com online. cit. 2020-12-26. Dostupné online. 
  85. Energie moří. www.energyweb.cz online. 2006- cit. 2020-12-26. Dostupné online. 
  86. Renewable Energy Market Update Outlook for 2023 and 2024 online. IEA cit. 2023-09-29. Dostupné online. 
  87. IRENA 2023, s. 21
  88. IRENA 2023, s. 21. Pozn.: Složená roční míra růstu 2013–2022.
  89. Global Electricity Review 2023. Ember online. 2023-04-11 cit. 2023-09-29. Dostupné online. (anglicky) 
  90. NREL ATB 2021, Utility-Scale PV
  91. Okénko Nazeleno: Kdy mají obnovitelné zdroje smysl?, Nazeleno.cz
  92. Solar energy perspectives. Paris: OECD/IEA 1 online resource (228 pages) s. Dostupné online. ISBN 978-92-64-12458-5, ISBN 92-64-12458-6. OCLC 778434303 
  93. Energy - Energy Supporting the chemical science community to help create a sustainable energy future. Royal Society of Chemistry online. cit. 2020-12-26. Dostupné online. (anglicky) 
  94. DYE, S. T. Geoneutrinos and the radioactive power of the Earth: GEONEUTRINOS. Reviews of Geophysics. 2012-09, roč. 50, čís. 3. Dostupné online cit. 2020-12-26. DOI 10.1029/2012RG000400. (anglicky) 
  95. THE KAMLAND COLLABORATION. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geoscience. 2011-09, roč. 4, čís. 9, s. 647–651. Dostupné online cit. 2020-12-26. ISSN 1752-0894. DOI 10.1038/ngeo1205. (anglicky) 
  96. geothermal energy | Description, Uses, History, & Pros and Cons. Encyclopedia Britannica online. cit. 2020-12-26. Dostupné online. (anglicky) 
  97. Geothermal Heat Pumps. Energy.gov online. cit. 2020-12-26. Dostupné online. (anglicky) 
  98. The State of our Energy Systems in Two Simple Graphics online. Net Zero Foundation — Leading to the Age of Free Energy cit. 2020-12-26. Dostupné online. 
  99. Biomasa - definice a členění. TZB-info online. cit. 2020-12-27. Dostupné online. 
  100. Biomasa pro bioenergii: zdroje, management a využití. biom.cz online. 2001-01-01 cit. 2020-12-27. Dostupné online. 
  101. Biomasa. www2.zf.jcu.cz online. cit. 2020-12-27. Dostupné v archivu pořízeném z originálu dne 2021-03-19. 
  102. HOWARD, Brian. Turning cow waste into clean power on a national scale. TheHill online. 2020-01-28 cit. 2020-12-27. Dostupné online. (anglicky) 
  103. Biomasa pro energii, Národní ústav odborného vzdělávání. www.nuov.cz online. cit. 2020-12-27. Dostupné online. 
  104. Jaký je potenciál využití biomasy v Česku a ve světě. oEnergetice.cz online. cit. 2020-12-27. Dostupné online. 
  105. Fuel Ethanol Production: GSP Systems Biology Research. web.archive.org online. 2010-05-27 cit. 2020-12-27. Dostupné v archivu pořízeném z originálu dne 2010-05-27. 
  106. HOUGHTON, John; WEATHERWAX, Sharlene; FERRELL, John. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. s.l.: s.n. Dostupné online. (English) DOI: https://doi.org/10.2172/1218382. 
  107. a b Renewables in Global Energy Supply. An IEA Fact Sheet online. OECD/International Energy Agency, 2007-01 cit. 2023-09-29. Dostupné online. 
  108. JUPE, SCE; MICHIORRI, A; TAYLOR, PC. Renewable Energy online. Rijeka: 2009 cit. 2023-09-29. Kapitola Increasing the energy yield of generation from new and renewable energy resources, s. 37–62. 
  109. Sandia National Laboratories: News Releases : Defense-scale supercomputing comes to alternative energy research. web.archive.org online. 2016-08-28 cit. 2023-09-29. Dostupné v archivu pořízeném z originálu dne 2016-08-28. 
  110. Německo zvyšuje podíl obnovitelých zdrojů. Proud. Roč. 2020, čís. 1, s. 46. ISSN 2464-7292. 
  111. ČEZ se účastní výstavby největšího světového elektrolyzéru na výrobu zeleného vodíku. TZB-info online. cit. 2020-04-14. Dostupné online. 
  112. V Nizozemsku vyroste velká továrna na "zelený" vodík. Proud. Roč. 2020, čís. 1, s. 46. 
  113. EU Power Sector in 2020 online. EMBER cit. 2021-01-28. Dostupné online. (anglicky) 
  114. Bude dost oceli a hliníku pro další rozvoj obnovitelných zdrojů? – Ekologické bydlení online. cit. 2020-12-01. Dostupné online. 
  115. Solving geothermal energy's earthquake problem. phys.org online. cit. 2020-12-01. Dostupné online. (anglicky) 
  116. Reservoir-Induced Seismicity - an overview | ScienceDirect Topics. www.sciencedirect.com online. cit. 2020-12-01. Dostupné online. (anglicky) 
  117. Reservoirs play substantial role in global warming. phys.org online. cit. 2020-12-01. Dostupné online. (anglicky) 
  118. LU, Shibao; DAI, Weidong; TANG, Yao. A review of the impact of hydropower reservoirs on global climate change. Science of The Total Environment. 2020-04, roč. 711, s. 134996. Dostupné online cit. 2020-12-01. DOI 10.1016/j.scitotenv.2019.134996. (anglicky) 
  119. Scientists warn of the social and environmental risks tied to the energy transition. phys.org online. cit. 2020-12-01. Dostupné online. (anglicky) 
  120. Evropská Unie dává výstavbě obnovitelných zdrojů prioritu. České zákony na to ale stále nejsou připraveny. www.enviweb.cz online. Dostupné online. 
  121. Informace Energetického regulačního úřadu. Ing. Alena Vitásková předsedkyně Energetického regulačního úřadu. Praha, listopad 2012
  122. http://www.ekobydleni.eu/energie/oecd-podpora-fosilnich-zdroju-energie-vysava-verejne-zdroje - OECD: podpora fosilních zdrojů energie vysává veřejné zdroje
  123. O vodní energetice online. Skupina ČEZ cit. 2021-04-02. Dostupné online. 

Literaturaeditovat | editovat zdroj

Související článkyeditovat | editovat zdroj

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Obnovitelná_energie
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Ázerbájdžán
Újezd (Malá Strana)
Úmrtí v roce 2021
Úrodnost
Ústup ledovců od roku 1850
Úterý
Útok na Univerzitu v Garisse
Čáslav
Číslo
Čechy
Čeněk Junek
Černé moře
Černý uhlík
Červen
Červenec
Česká Wikipedie
České Budějovice
Český ježek
Český Krumlov
Český Těšín
Česko
Českobratrská církev evangelická
Československý svaz žen
Řád německých rytířů
Říšský sněm (Svatá říše římská)
Řím
Římské číslice
Řecko
Šestá hodnotící zpráva IPCC
Šetření energií
Španělé
Španělsko
Štýrské vévodství
Štýrský Hradec
Švédsko
Švýcarsko
Švališér
Železná opona
Železniční nehoda v Sekulích
Železniční trať Plzeň – Furth im Wald
Ženijní vojsko
Židé
Židovský kalendář
Životní prostředí
Žofie Dorotea Šlesvicko-Holštýnsko-Sonderbursko-Glücksburská
1. červenec
1. duben
1. listopad
1. prosinec
1. srpen
10. červenec
10. duben
10. pěší pluk
10. prosinec
10. srpen
1015
1099
11. červenec
11. duben
11. srpen
11. září
1103
1120
1199
12. únor
12. červen
12. červenec
12. říjen
12. březen
12. duben
12. květen
12. srpen
1240
1252
1276
13. únor
13. červen
13. červenec
13. říjen
13. březen
13. duben
13. květen
13. leden
13. srpen
1348
1385
14. červenec
14. říjen
14. duben
14. srpen
14. září
1410
1442
1453
1461
1473
1490
1496
1497
15. únor
15. červen
15. červenec
15. duben
15. prosinec
15. srpen
15. století
15. září
1504
1506
1521
1526
1553
1555
1559
1561
1562
1563
1564
1566
1567
1570
1579
1584
1593
1595
1597
16. únor
16. červenec
16. duben
16. listopad
16. prosinec
16. srpen
16. století
16. září
1606
1607
1615
1616
1618
1619
1623
1626
1632
1633
1634
1635
1636
1637
1638
1639
1640
1646
1647
1649
1651
1653
1656
1657
1663
1667
1669
1671
1672
1676
1679
1685
1689
1690
1694
1695
1697
1698
17. červenec
17. duben
17. květen
17. srpen
17. století
1701
1703
1706
1707
1708
1710
1711
1715
1716
1717
1718
1719
1725
1733
1737
1744
1745
1758
1762
1767
1772
1773
1775
1778
1779
1783
1789
1792
1793
1796
1797
1798
1799
18. únor
18. červenec
18. březen
18. duben
18. leden
18. pěší pluk
18. srpen
18. století
18. září
1800
1802
1803
1805
1806
1808
1810
1811
1813
1814
1815
1816
1817
1820
1821
1823
1824
1827
1828
1829
1833
1834
1835
1838
1840
1841
1844
1847
1849
1850
1857
1859
1862
1863
1864
1866
1867
1868
1869
1871
1872
1874
1875
1876
1877
1878
1879
1884
1885
1886
1888
1889
1890
1891
1892
1893
1895
1896
1897
1898
1899
19. únor
19. červenec
19. říjen
19. duben
19. květen
19. leden
19. srpen
19. století
19. září
1900
1902
1903
1904
1905
1906
1907
1909
1910
1912
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1932
1933
1934
1935
1937
1939
1940
1941
1943
1944
1945
1946
1947
1948
1949
1950
1952
1953
1958
1960
1961
1962
1963
1964
1966
1967
1968
1970
1973
1975
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1992
1993
1994
1995
1997
1998
1999
2. únor
2. červenec
2. duben
2. prosinec
2. srpen
2. tisíciletí
20. červenec
20. říjen
20. duben
20. květen
20. srpen
2001
2002
2003
2004
2010
2012
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
21. únor
21. červenec
21. duben
21. leden
21. prosinec
21. srpen
21. září
22. únor
22. červenec
22. říjen
22. duben
22. listopad
22. srpen
23. únor
23. červen
23. červenec
23. říjen
23. březen
23. duben
23. květen
23. leden
23. listopad
23. srpen
238
24. červenec
24. říjen
24. duben
24. květen
24. listopad
24. srpen
24. září
25. červen
25. červenec
25. duben
25. leden
25. listopad
25. srpen
25. září
26. únor
26. červen
26. červenec
26. březen
26. duben
26. květen
26. leden
26. srpen
27. červen
27. červenec
27. březen
27. duben
27. květen
27. srpen
28. červen
28. červenec
28. říjen
28. duben
28. květen
28. leden
28. listopad
28. prosinec
28. srpen
28. září
29. červenec
29. březen
29. duben
29. leden
29. srpen
29. září
3. červenec
3. březen
3. duben
3. květen
3. pěší pluk (Habsburská monarchie)
3. srpen
3. září
30. červen
30. červenec
30. březen
30. duben
30. květen
30. listopad
30. srpen
30. září
31. červenec
31. říjen
31. srpen
35. pěší pluk
4. únor
4. červen
4. červenec
4. březen
4. duben
4. květen
4. srpen
4. století
4. září
484 př. n. l.
5. únor
5. červenec
5. říjen
5. duben
5. srpen
5. září
6. červenec
6. duben
6. květen
6. listopad
6. srpen
7. únor
7. červenec
7. říjen
7. březen
7. duben
7. leden
7. srpen
7. září
70
748
8. únor
8. červenec
8. duben
8. květen
8. srpen
8. září
814
9. únor
9. červenec
9. říjen
9. březen
9. duben
9. květen
9. leden
9. listopad
9. srpen
9. září
972
988
Aš-Šabáb
Abatyše
Adam Benedikt Bavorovský
Adam Rodriguez
Adaptace na globální oteplování
Adolf Šimperský
Adolf Procházka
Adriaen van de Velde
Aerosol
Albánie
Albedo
Albrecht Fridrich Rakousko-Těšínský
Aleš Pikl
Aleš Svoboda (anglista)
Alexander Roslin
Alexandr Abaza
Alexandr I. Jagellonský
Alexandr Něvský
Alois Pravoslav Trojan
Amanda Gormanová
Ambroise Thomas
Americká válka za nezávislost
Amharsko
Andronikos IV.
Anglické království
Anna Stuartovna
Antarktida
Antonín Hardt
Antonio Barberini
Arad (Rumunsko)
Arcivévoda
Arcivévoda Ferdinand
Argentina
Argentinská invaze na Falklandy
Aristokrat
Arktida
Armádní sbor
Arménie
Arnošt Habsburský
Arnošt Okáč
Atlantská poledníková převratná cirkulace
Atmosféra Země
Atomové bombardování Hirošimy a Nagasaki
Atribuce probíhající klimatické změny
August Heinrich Hoffmann von Fallersleben
Automobilka
Autoritní kontrola
Aztécká říše
Bádensko-Württembersko
Bělení korálů
Bělorusko
Břežany (okres Znojmo)
Březen
Barbara Žofie Braniborská
Barokní architektura
Bazilika Svatého hrobu
Bazilika svatého Pavla za hradbami
Belgie
Berlín
Berlínská blokáda
Berlínská stěna
Berlínská zeď
Berlin Ostbahnhof
Berlin Wall
Beroun
Bertha Benzová
Beton
Bioenergie
Bitva na Něvě
Bitva u Castiglione
Bitva u Dolních Věstonic
Bitva u Grunwaldu
Bitva u Partizánské Ľupči
Bitva u Petrovaradína
Bitva u Wittstocku
Boček z Poděbrad
Body zvratu klimatického systému
Boeing B-29 Superfortress
Bohumír Kapoun ze Svojkova
Boleslav I.
Boleslav II.
Boris Hybner
Borys Antonenko-Davydovyč
Braniborská brána
Bratislava
Brno
Brusel
Budapešť
Burkina Faso
Císařská armáda (habsburská)
Císařský pěší pluk č. 28 (1769)
Cement
Chaluhy
Chauncey Delos Beadle
Cheb
Checkpoint Charlie
Chicago
Chile
Chlévský hnůj
Chorvatsko
Christianizace
Christian Knorr von Rosenroth
Chrudim
Cieszyn
Cilli
Cisterciáni
Cithara sanctorum
Citlivost klimatu
Clerfayt
CN Tower
Commons:Featured pictures/cs
Conquista
Conrad Aiken
Conrad Schumann
Covid-19
Cremona
Cyril Zapletal
Dělení Polska
Dělostřelectvo
Důlní neštěstí Copiapó 2010
Daimjó
Dalibor z Kozojed
Daniel Alexius z Květné
Daniel Speer
Daniel Stach
David Ferrer
Dengue
Dentista
Deodoro da Fonseca
Dezertifikace
De Ligne
Diecéze míšeňská
DIE ZEIT
Dionýz Štúr
Dioskúrové
Divize (vojenství)
Dlouhá turecká válka
Dobývání Aztécké říše
Doba meziledová
Dolar
Dolní Rakousy
Domažlice
Domenico Passignano
Dopady globálního oteplování
Doprava
Dragoun
Drahomíra Pithartová
Druhá světová válka
Duben
Dukla
Dusty Hill
East Side Gallery
Eduard Lederer
Eduard Orel
Egon Krenz
Egypt
Egyptské hieroglyfy
Ekonomické důsledky klimatických změn
Ekonomie globálního oteplování
Ekosystém
Elektřina
Elektromobil
Eliška Junková
El Niño – Jižní oscilace
Emilie Bednářová
Enže
Encyklopedie
Energetická účinnost
Environmentální migrace
Erich Honecker
Erich Mielke
Erika
Etiopie
Eutrofizace
Evžen Savojský
Evangelická církev
Evropa
Ewald Hering
Extrémy počasí
Fat Man
Ferdinand Bonaventura z Harrachu
Ferdinand II. Štýrský
Ferdinand III. Habsburský
Ferdinand III. Kastilský
Ferdinand IV. Habsburský
Ferdinand Maria Bavorský
Ferdinand z Ditrichštejna
Filip IV. Španělský
Film
Filozofická fakulta Jihočeské univerzity
Ford model A (1903)
Ford Motor Company
Forest Whitaker
Fosilní palivo
Francesco Maria Grimaldi
Francie
Francouzská národní knihovna
Francouzské království
Francouzsko-španělská válka
František Bernard Vaněk
František Buttula
František Harant
František Hošek
František Hochmann
František Jiří Mach
František Josef Kinský
František Minařík
František Pospíšil
František Svoboda (fotbalista)
František Taufer
František Vitásek (kněz)
František Vrbka
František z Ditrichštejna
Franz Anton Hillebrandt
Freiburg im Breisgau
Freon
Fytoplankton
Görlitz
Günter Schabowski
Gęsiówka
Gemeinsame Normdatei
Gent
Geoinženýrství
Georg Caspar Wecker
Giacomo Casanova
Giacomo Tritto
Gilbert du Motier, markýz de La Fayette
Globální ochlazování
Globální oteplování
Globální stmívání
Go-Momozono
Golfský proud
Google
Google+
Gorbačov
Gorice a Gradiška
Gotická architektura
Grónský ledovec
Grónsko
Grand Prix Německa
Gregoriánský kalendář
Gustave Lanson
Guy de Maupassant
Győr
Habsburská monarchie
Hans Christian Andersen
Harvardova univerzita
Hedvika Eleonora Holštýnsko-Gottorpská
Hegemonie
Herbert George Wells
Hernán Cortés
Hlavní strana
Hliník
Hnojivo
Hohenlohe
Horní Lužice
Horní Rakousy
Hospodářské zvíře
Hospodářský růst
Hovězí maso
Hradec Králové
Hugo Salus
Hulán
Husar
Hynek Albrecht
Ich bin ein Berliner
Igor Vsevoložskij
IHned.cz
Ilja Repin
Incident v Tonkinském zálivu
Indie
Infekční onemocnění
Infračervené záření
Innsbruck
Innviertel
Instrumentální záznamy teplot
International Standard Book Number
International Standard Serial Number
Internet Archive
Italská tažení francouzských revolučních válek
Italské království
Ivar Aasen
Jánoš Korvín
Ján Burius
Jaan Kaplinski
Jaderná energie
Jakub Antonín Zemek
Jaltská dohoda
James Hansen
Jana Andresíková
Jana Plodková
Jan Karel Hraše
Jan Karel Liebich
Jan Vanýsek
Japonsko
Jaromír Hořejš
Jaroslav Arnošt Trpák
Jaroslav Drobný (tenista)
Jaroslav Kladenský z Kladna
Jaroslav Volek
Jean-Baptiste Dumas
Jeruzalém
Jiří Adamíra
Jiří Dánský
Jiří Kovařík (historik)
Jiří Malenovský
Jiří Pavlov
Jiří z Poděbrad
Jiřina Hanušová
Jižní polokoule
Jihlava
Jihovýchodní Asie
Jindřiška Adéla Marie Savojská
Jindřiška Klímová
Jindřich
Jindřich Eckert
Jindřich Geisler
Jindřich I. Anglický
Jindřich IV.
Jindřich Ladislav Barvíř
Jindřich Mahelka
Jindřich Veselý
Jindřich Wankel
Jocelyn Bellová Burnellová
Johann Friedrich Struensee
Johann Joseph Würth
Johann Wilhelm Ludwig Gleim
John Fitzgerald Kennedy
Josef Šnejdárek
Josef Fischer (filosof)
Josef Hrnčíř
Josef Jaromír Štětka
Josef Kalousek
Josef Kovalčuk
Josef Obeth
Josef Patzel
Joseph Merrick
Judenburg
Jules Mazarin
Křesťanství
Křišťan
Kanada
Kancionál
Kapitulace u Világoše
Karel Škorpil
Karel Babánek
Karel I. Stuart
Karel Jiráček
Karel Nepraš
Karel Odstrčil
Karel starší ze Žerotína
Karel Veliký
Karel X. Gustav
Karola Vasa-Holstein-Gottorpská
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Narození 5. srpna
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Kathrin Zettelová
Kaunitz
KDU-ČSL
Keelingova křivka
Khevenhüller
Klášter
Klimatická bezpečnost
Klimatická krize
Klimatická spravedlnost
Klimatická stagnace
Klimatické změny
Klimatický model
Klimatický systém
Kluž
Kníže
Knin
Košice
Koks
Kolín
Koloběh uhlíku
Komunismus
Kondenzační jádro
Konflikt v Tigraji 2020
Kongresové centrum Praha
Kopaničářství
Korál
Korálový útes
Korunní země
Korutany
Kosmodrom Bajkonur
Kostel svatého Petra a Pavla (Görlitz)
Kouřim
Kraňské vévodství
Kremže
Kristýna I. Švédská
Kristián
Kroměříž
Kryštof z Gendorfu
Kryscina Cimanouská
Kukuřice
Kunhuta ze Šternberka
Kurt Biedenkopf
Kutná Hora
Květen
Kyjev
Kyjevská Rus
Kyrysník
Kyslík
Lalibela
Landstreitkräfte
Latina
Laura Mancini
Ledový příkrov
Leoben
Leonardo Leo
Leonid Iljič Brežněv
Leon Max Lederman
Leopold Chalupa
Leopold I.
Les
Lesní požár
Letní olympijské hry 2020
Levoča
Libéral Bruant
Library of Congress Control Number
Linec
Linford Christie
Lipník nad Bečvou
Litoměřice
Litomyšl
Lombardie
Los Angeles
Lužice
Lužická Nisa
Lublaň
Ludvík Kolek
Ludvík XIII.
Ludvík XVI.
Ludvík XVIII.
Ludwig von Benedek
Ludwig Wokurek
Luisa Oranžsko-Nasavská
Luteránství
Lvov
Lyon
Mírný pás
Mühlviertel
Městské okresy v Německu
Maďarská revoluce 1848–1849
Malárie
Malá doba ledová
Maledivy
Mannheim
Mantova
Maršál
Maria Sibylla Merianová
Marie Antonie Habsburská
Marie Dostalová
Marie Medicejská
Marie Terezie
Marie Waltrová
Marilyn Monroe
Markéta Habsburská (1651–1673)
Markýz
Mars 6
Martin Antonín Lublinský
Mart Stam
Marvin Gaye
Masakry ve varšavské čtvrti Wola
Masamune Date
Massachusetts
Matyáš Korvín
Maurice Papon
Maxmilián II. Emanuel
Maxmilián II. Habsburský
Mayové
Melchiorre Cafà
Methan
Metro (deník)
Mezivládní panel pro změnu klimatu
Michail I. Fjodorovič
Michal Pavlata (herec)
Michal Sendivoj ze Skorska
Milán
Milankovičovy cykly
Milavče
Miloš Navrátil (muzikolog)
Miloslav Stehlík
Miroslav Štěpán
Miroslav Jindra
Miroslav Liberda
Mistrovství světa ve fotbale 2018
Mlži
Mladá Boleslav
Mořské ptactvo
Mořský led
Mořský proud
Mokřad
Mons
Monzun
Morava
Moravské markrabství
Moskva
Most
Murad IV.
Muslimové
Náhorně-karabašská republika
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní garda (Francie)
Národní knihovna České republiky
Národní knihovna Izraele
Nürburgring
Němčina
Německá demokratická republika
Německo
Německo-polská státní hranice
Nadace Wikimedia
Nadmořská výška
Nagasaki
Namur
Napoleonovo tažení do Egypta a Sýrie
Napoleonské války
Napoleon Bonaparte
Natálie Kubištová
National Archives and Records Administration
Naum Gabo
Neil Armstrong
Nelson Mandela
Neugebauer
New York
Nicolas Boileau
Nicolas Malebranche
Niels Henrik Abel
Nikita Sergejevič Chruščov
Nikolaj Gavrilovič Spafarij
Nizozemská revoluce
Nizozemsko
Norsko
Nové Město na Moravě
Nový Bydžov
Nový Jičín
Nova Gorica
Novgorod
Novorossijsk
Oběžná dráha
Oblak
Obnovitelná energie
Ocel
Odlesňování
Odpadní voda
Okupační zóny Německa
Okyselování oceánů
Olomouc
Olympijské hry
Operace Bouře
Operace Bronse
Operace Pierce Arrow
Oradea
Organizace spojených národů
Organizace ukrajinských nacionalistů
Osijek
Osmanská říše
Osmansko-habsburské války
Osmdesátiletá válka
Ostřihom
Ostnatý drát
Oudenaarde
Oxford University Press
Oxid dusný
Oxid siřičitý
Oxid uhličitý
Ozbrojené síly Turecka
Ozon
Pád Berlínské zdi
Pád Konstantinopole
Pěchota
Přívalový déšť
Předměstí
Přemyšl
Přemysl Otakar II.
Přerov
Přimda (hrad)
Pšenice
Paříž
Pařížská dohoda
Pagekon obří
Palais du Luxembourg
Paleocenní–eocenní teplotní maximum
Palestina
Palmový olej
Památková rezervace
Památník Berlín-Hohenschönhausen
Pandemie covidu-19
Pandemie covidu-19 v Česku
Panoráma
Papež
Parní stroj
Patrick Ewing
Pavel Krbálek
Pavel Vízner
Pellegrini
Pequotská válka
Permafrost
Petra Faltýnová
Petr Štěpánek (pedagog)
Petr Lom
Petr Nováček
Petr Prouza
Petr Urbánek (básník)
Pevnina
Pforzheim
Piero Sraffa
Pierre-Esprit Radisson
Pierre Zaccone
Pietro Antonio Cesti
Pivovar
Ploutvonožci
Pluk
Plzeň
Počasí
Pošta
Požáry
Požáry v Austrálii (2019–2020)
Poddanství
Podvýživa
Pohoří
Pokus o vojenský převrat v Turecku 2016
Polární zesílení
Polština
Polní maršál
Polní myslivec
Polní zbrojmistr
Polské království
Polsko
Polsko-litevská unie (1569–1795)
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Německo
Portál:Obsah
Portál:Příroda
Portál:Rakousko
Portál:Sport
Portál:Válka
Port Stanley
Posádka
Postupimské náměstí
Potenciál globálního oteplování
Poušť
Povodeň
Průjem
Průmysl
Průmyslová revoluce
Praha
Prapor (jednotka)
Prapor Zośka
Prešov
Prevét
Program OSN pro životní prostředí
Propad uhlíku
Prostějov
Proxy data
Pruské Slezsko
Prusko
Prusko-rakouská válka
První křížová výprava
První světová válka
Q5086#identifiers
Q5086#identifiers|Editovat na Wikidatech
Rámcová úmluva OSN o změně klimatu
Rýže
Radiační působení
Rafail Levickij
Raimund Montecuccoli
Rakouské arcivévodství
Rakouské císařství
Rakouské Slezsko
Rakouské vévodství
Rakousko
Rakousko-uherská armáda
Rakousko-uherské vyrovnání
Rakousko-Uhersko
Rakovník
Referendum
Rembrandt
Renesanční architektura
Republika Srbská Krajina
Robotní patent (1775)
Rok
Roman Pokorný
Ronald Reagan
Ropa
Ropná skvrna
Rosetta
Rosettská deska
Rozdělení Berlína
Rozvojová země
Rudolf Štrubl
Rudolf Bergman
Rudolf I. Habsburský
Rudolf z Thunu
Ruské carství
Rusko
Sémiotika
Sírany
Sója (rod)
Safíovci
Safí I.
Sahara
Sakrální stavba
Sambir
Sankt Pölten
Sanok
Santorio Santorio
Sapér
SARS-CoV-2
Sasko
Scénáře socioekonomického vývoje
Scénáře socioekonomického vývoje#SSP1: Udržitelný vývoj (zelená cesta)
Scénáře socioekonomického vývoje#SSP3: Regionální rivalita (kamenitá cesta)
Scénáře socioekonomického vývoje#SSP5: Rozvoj založený na fosilních palivech (cesta po dálnici)
Schutzstaffel
Sedmihradsko
Segedín
Sekule
Senát Spojených států amerických
Sergej Adamovič Kovaljov
Severní Amerika
Severní polokoule
Seznam římských králů
Seznam olomouckých biskupů a arcibiskupů
Seznam pěších pluků císařsko-habsburské armády
Seznam světového dědictví v Africe#Etiopie
Skládka
Skleníkové plyny
Skleníkový efekt
Slaný
Slezská kuchyně
Slezsko
Slovo roku
Sluneční aktivita
Sluneční energie
Sluneční zářivost
Sníh
Socha Svobody
Sociální nerovnost
Solární panel
Songgotu
Sopečná erupce
Soubor:09 September - Percent of global area at temperature records - Global warming - NOAA cs.svg
Soubor:20210331 Global tree cover loss - World Resources Institute.svg
Soubor:Adamrodriguez05.JPG
Soubor:Battaillon – Parade-Ordnung 1749.png
Soubor:Battaillon – Schlacht-Ordnung 1749.png
Soubor:Berlin-wall-map en.svg
Soubor:Berlinermauer.jpg
Soubor:Berliner Mauer.jpg
Soubor:BerlinWall01b.jpg
Soubor:Berlin Wall (13-8-2006).jpg
Soubor:Berlin Wall 1961-11-20.jpg
Soubor:Berlin Wall death strip, 1977.jpg
Soubor:Berlin wall street sign crossed on bicycle 2011.jpg
Soubor:Berlin Wall victims monument.jpg
Soubor:Bleachedcoral.jpg
Soubor:BrandenburgerTorDezember1989.jpg
Soubor:Bundesarchiv Bild 173-1321, Berlin, Mauerbau.jpg
Soubor:Bundesarchiv Bild 183-1990-0325-012, Berlin, East Side Gallery.jpg
Soubor:Bundesarchiv Bild 183-87605-0002, Berlin, Mauerbau, US-Soldaten, Volkspolizisten.jpg
Soubor:Bundesarchiv Bild 183-88574-0004, Berlin, Mauerbau, Bauarbeiten.jpg
Soubor:Bundesarchiv Bild B 145 Bild-P061246.jpg
Soubor:Change in Average Temperature With Fahrenheit.svg
Soubor:CO2 Emissions by Source Since 1880.svg
Soubor:Daniel Stach (2016).jpg
Soubor:David Ferrer - Roland-Garros 2013 - 014.jpg
Soubor:Di05.jpg
Soubor:East German Guard - Flickr - The Central Intelligence Agency (cropped).jpg
Soubor:Endangered arctic - starving polar bear edit.jpg
Soubor:Fenster-des-Gedenkens-Berlin.jpg
Soubor:Ferdinand Maria of Bavaria.jpg
Soubor:Forest Whitaker.jpg
Soubor:František Pospíšil 2015.JPG
Soubor:GDMaupassant.jpg
Soubor:Globalni emise sklenikovych plynu a moznosti jejich snizeni CS.svg
Soubor:Globalni toky energie cs.svg
Soubor:Global Energy Consumption-cs.svg
Soubor:Greenhouse Gas Emissions by Economic Sector-cs.svg
Soubor:Greenhouse gas emission scenarios 01-cs.svg
Soubor:Guy de Maupassant fotograferad av Félix Nadar 1888.jpg
Soubor:Ilya Repin (1909).jpg
Soubor:Jana Plodková 2015.JPG
Soubor:Kaiserliches Kürassierregiment K 2 1734 Gudenushandschrift.jpg
Soubor:Karel starší ze Žerotína.png
Soubor:Kathrin Zettel.jpg
Soubor:Kennedy in Berlin.jpg
Soubor:Lambiel at the 2010 European Championships.jpg
Soubor:Launch of IYA 2009, Paris - Grygar, Bell Burnell cropped.jpg
Soubor:Lederer Eduard (1859-1944).jpg
Soubor:Leon M. Lederman.jpg
Soubor:Linford Christie 2009.png
Soubor:Mapa-zmeny-teploty.svg
Soubor:Marvin Gaye (1965).png
Soubor:Mauerrest an der Niederkirchnerstraße 2009.JPG
Soubor:Mauna Loa CO2 monthly mean concentrationCS.svg
Soubor:Mountain Pine Beetle damage in the Fraser Experimental Forest 2007.jpg
Soubor:Nagasakibomb.jpg
Soubor:National Park Service Thawing permafrost (27759123542).jpg
Soubor:Neil Armstrong pose.jpg
Soubor:NORTH POLE Ice (19626661335).jpg
Soubor:Orroral Valley Fire viewed from Tuggeranong January 2020.jpg
Soubor:Patrick Ewing Magic cropped.jpg
Soubor:Physical Drivers of climate change-cs.svg
Soubor:Projected Change in Temperatures-cs.svg
Soubor:Rembrandt Harmensz. van Rijn 141.jpg
Soubor:Sea level history and projections-cs.svg
Soubor:Soil moisture and climate change-cs.svg
Soubor:Structure of Berlin Wall-info-de.svg
Soubor:Svět knihy 2009 - Boris Hybner.jpg
Soubor:Teddy Sheringham 2012.jpg
Soubor:Thilafushi1.jpg
Soubor:Vývoj koncentrace CO2 v atmosféře.svg
Soubor:Vývoj průměrné světové teplotní anomálie.svg
Soubor:Vitus Bering.jpg
Soubor:West and East Berlin.svg
Soubor:Woodbridge Wimbledon 2004.jpg
Speciální:Kategorie
Speciální:Nové stránky
Speciální:Statistika
Speciální:Zdroje knih/80-7185-172-8
Speciální:Zdroje knih/9788090274556
Spojené státy americké
Spréva
Srážka vlaků u Milavčí
Srážky
Srpen
Státní hranice
Stéphane Lambiel
Střední Evropa
Středověké klimatické optimum
Staré Brno
Status quo
Stratosféra
Stryj
Studená válka
Subsaharská Afrika
Subtropický pás
Sucho
Světová banka
Světová zdravotnická organizace
Světskost
Svatá říše římská
Svijonožci
Sydney Camm
Těšín
Těžba uhlí
Třicetiletá válka
Tamuz
Tarnów
Teddy Sheringham
Tenis
Tenochtitlán
Teorie černé labutě
Tepelná kapacita
Tepelné čerpadlo
Teresa Pola
Ternopil
Terry Cooper
The Guardian
Thilafushi
Thurn
Tigrajská lidově osvobozenecká fronta
Titus
Tobiáš Jan Becker
Todd Woodbridge
Tokio
Toky uhlíku
Tomáš Hoskovec
Tomáš Koutný
Tony Esposito (lední hokejista)
Toronto
Tramvaj
Tropická cyklóna
Tropické cyklóny a změna klimatu
Tropický pás
Troposféra
Tung Čchi-čchang
Tuvalu
Tyrolské hrabství
Užhorod
Udržitelná doprava
Udržitelná energie
Uherské Hradiště
Uherské království
Uhersko
Uhlí
Uhlíková neutralita
Uhlíkový rozpočet
Ukončování využívání fosilních paliv
UNESCO
Univerzitní systém dokumentace
Urban VIII.
Václav Fiala (ilustrátor)
Václav Havel
Václav Kotrba
Václav Vojtěch Červenka z Věžňova
Válka
Válka o Falklandy
Válka o polské následnictví
Válka ve Vietnamu
Vídeň
Vídeňská operace
Vídeňský les
Vídeňský mír
Východní Asie
Východní blok
Východní Evropa
Východní Germáni
Vědecký konsenzus o změně klimatu
Věra Beranová
Větrná energie
Vakcína proti covidu-19
Varšavská smlouva
Varšavské povstání
Variabilita klimatu
Veřejná doprava
Vegetace
Velké okresní město
Velký bariérový útes
Vesmír
Viktor Hájek
Vilém Aetheling
Vilém Kropp
Vincenzo Legrenzio Ciampi
Virtual International Authority File
Vital Šyšov
Vitus Bering
Vladimír Černík
Vladimír Šlechta
Vladimír Špidla
Vladimír I.
Vladimír Novák (voják)
Vladimír Vavřínek
Vladislav II. Jagello
Vladislav II. Jagellonský
Vladislav IV. Vasa
Vlastimil Letošník
Vlhkost vzduchu
Vliv globálního oteplování na člověka
Vlna veder
Vodní energie
Vodní pára
Vojtěch Kryšpín (pedagog)
Volkspolizei
Vrchlabí
Vymírání
Vypařování
Vytápění
Vzestup hladiny oceánů
Walter Ulbricht
Wieselburg
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2021
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2021
Wikipedie:Ověřitelnost
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/srpen
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2021
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
William Holman Hunt
Willi Stoph
Woodrow Wilson
WorldCat
Yucatánský poloostrov
Září
Západní Antarktida
Západní Berlín
Západní blok
Západní Německo
Západní Slované
Zatmění Slunce
Zdeněk Novák (generál)
Zeměbrana
Zemědělství
Země Koruny české
Zemní plyn
Zemský okres Zhořelec
Zgorzelec
Zmírňování změny klimatu
Znečištění ovzduší
Znečištění vody
Znojmo
Zpětná vazba
Zpětné vazby klimatických změn
Zpravodajská služba




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk