Malá doba ledová - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Malá doba ledová
 ...
Průměrné globální teploty ukazují, že malá doba ledová nebyla samostatným celoplanetárním obdobím, ale regionálním jevem nacházejícím se na konci dlouhého poklesu teplot, který předcházel současnému globálnímu oteplování.[1]
Sluneční aktivita rekonstruovaná na základě izotopických analýz.

Malá doba ledová byla obdobím regionálního ochlazení, které se projevilo zejména v oblasti severního Atlantiku,[2] nejednalo se však o skutečnou dobu ledovou globálního rozsahu.[3] Termín zavedl do vědecké literatury François E. Matthes v roce 1939.[4] Konvenčně se toto období vymezuje jako období od 16. do 19. století,[5][6][7] někteří odborníci však dávají přednost alternativnímu časovému rozmezí od roku 1300[8] do roku 1850.[9][10][11]

NASA Earth Observatory zaznamenává tři obzvláště chladná období. Jedno začalo kolem roku 1650, další kolem roku 1770 a poslední v roce 1850, přičemž všechny byly odděleny intervaly mírného oteplení.[7] Třetí hodnotící zpráva IPCC se domnívá, že načasování a oblasti zasažené malou dobou ledovou naznačují spíše do značné míry nezávislé regionální změny klimatu než globálně synchronní zvýšené zalednění. V tomto období došlo nanejvýš k mírnému ochlazení severní polokoule.[3]

Bylo navrženo několik příčin: cyklický pokles slunečního záření, zvýšená sopečná činnost, změny v oceánské cirkulaci, změny oběžné dráhy a osového sklonu Země (orbitální síla), přirozená proměnlivost globálního klimatu a pokles lidské populace (například v důsledku Čingischánových masakrů, černé smrti a epidemií vznikajících v Americe po kontaktu s Evropou).[12][13]

Dotčené oblasti

Třetí hodnotící zpráva Mezivládního panelu pro změnu klimatu (TAR) z roku 2001 popisuje postižené oblasti:

Důkazy z horských ledovců skutečně naznačují zvýšené zalednění v řadě rozsáhlých oblastí mimo Evropu před 20. stoletím, včetně Aljašky, Nového Zélandu a Patagonie. Načasování maximálního zalednění v těchto regionech se však značně liší, což naznačuje, že mohou představovat do značné míry nezávislé regionální klimatické změny, nikoli globálně synchronní zvýšené zalednění. Současné důkazy tedy nepotvrzují globálně synchronní období anomálního chladu nebo tepla v tomto intervalu a zdá se, že konvenční termíny „malá doba ledová“ a „středověké teplé období“ mají omezenou použitelnost při popisu trendů v hemisférických nebo globálních změnách průměrné teploty v minulých stoletích... Z hemisférického hlediska lze za „malou dobu ledovou“ považovat pouze mírné ochlazení severní polokoule v tomto období o méně než 1 °C oproti hodnotám z konce dvacátého století.[3]

Čtvrtá hodnotící zpráva IPCC (AR4) z roku 2007 se zabývá novějšími výzkumy a věnuje zvláštní pozornost středověkému teplému období:

...pokud se na ně podíváme společně, v současnosti dostupné rekonstrukce naznačují obecně větší variabilitu trendů na stoleté časové škále v průběhu posledního 1 tisíciletí, než bylo patrné v TAR... Výsledkem je obraz relativně chladných podmínek v sedmnáctém a počátkem devatenáctého století a teplých podmínek v jedenáctém a počátkem patnáctého století, ale nejteplejší podmínky jsou patrné ve dvacátém století. Vzhledem k tomu, že úrovně spolehlivosti všech rekonstrukcí jsou široké, prakticky všechny rekonstrukce jsou fakticky zahrnuty do nejistoty, která byla dříve uvedena v TAR. Hlavní rozdíly mezi jednotlivými proxy rekonstrukcemi se týkají rozsahu minulých chladných exkurzí, především v průběhu dvanáctého až čtrnáctého, sedmnáctého a devatenáctého století.[14]

Poslední písemná zmínka o norských Gróňanech pochází z roku 1408 ze svatby v kostele Hvalsey, který je dnes nejlépe dochovanou norskou zříceninou.

Datování

O tom, kdy začala malá doba ledová, nepanuje shoda,[15][16] ale často se hovoří o řadě událostí, které předcházely známým klimatickým minimům. Ve 13. století začal v severním Atlantiku postupovat driftový led na jih, stejně jako ledovce v Grónsku. Neoficiální důkazy naznačují rozšiřování ledovců téměř po celém světě. Na základě radiokarbonového datování zhruba 150 vzorků odumřelého rostlinného materiálu s neporušenými kořeny, které byly odebrány zpod ledovců na Baffinově ostrově a na Islandu, Miller et al. uvádí (2012),[8] že chladná léta a růst ledovců začaly náhle mezi lety 1275 a 1300, po nichž následovalo „výrazné zesílení“ v letech 1430 až 1455.[8]

Naproti tomu rekonstrukce klimatu založená na délce ledovce[17][18] neukazuje žádné velké výkyvy v letech 1600 až 1850, ale silný ústup po tomto období.

Kterékoli z několika dat v rozmezí více než 400 let tedy může znamenat začátek malé doby ledové:

  • 1250, kdy začal růst atlantický led, chladné období, které bylo pravděpodobně vyvoláno nebo zesíleno mohutnou erupcí sopky Samalas v roce 1257[19] a související sopečnou zimou.
  • 1275 až 1300 pro dobu, kdy radiokarbonové datování rostlin ukazuje, že byly zahubeny zaledněním.
  • 1300 pro dobu, kdy přestala být teplá léta v severní Evropě spolehlivá.
  • 1315 pro dobu, kdy nastaly deště a velký hladomor v letech 1315–1317.
  • 1560 až 1630 pro dobu, kdy začala celosvětová expanze ledovců, známá jako Grindelwaldská fluktuace.[20]
  • 1650, nikoliv za začátek malé doby ledové, ale za začátek nejchladnějších let v polovině této doby, tj. za první klimatické minimum.

Malá doba ledová skončila ve druhé polovině 19. století nebo na počátku 20. století.[21][22][23]

Šestá zpráva IPCC popisuje nejchladnější období v posledním tisíciletí jako:[24]

"...několikasetleté období relativně nízkých teplot, které začalo přibližně v 15. století, přičemž průměrná hodnota GMST mezi lety 1450 a 1850 činila -0,03 °C v porovnání s lety 1850–1900."

Průběh podle regionu

Pochod armády přes Velký Belt

Evropa

Baltské moře zamrzlo dvakrát, v letech 1303 a 1306–1307, a následovaly roky „nezvyklých mrazů, bouří a dešťů a zvýšení hladiny Kaspického moře“. Malá doba ledová přinesla chladnější zimy do některých částí Evropy a Severní Ameriky.[25] V polovině 17. století byly farmy a vesnice ve švýcarských Alpách zničeny zasahujícími ledovci,[26] kanály a řeky ve Velké Británii a Nizozemsku často zamrzaly dostatečně hluboko, aby se na nich dalo bruslit a pořádat zimní slavnosti,[27] první mrazivá pouť na Temži se konala v roce 1608 a poslední v roce 1814. Změny mostů a dostavba nábřeží Temže ovlivnily průtok a hloubku řeky a výrazně snížily možnost dalších mrazů.[27][28]

Zimní bruslení na hlavním kanálu Pompenburg v Rotterdamu v roce 1825, krátce před minimem, autor Bartholomeus Johannes van Hove

V roce 1658 táhla švédská armáda přes Velký Belt do Dánska, aby zaútočila na Kodaň.

Zima v letech 1794–1795 byla obzvlášť krutá: francouzská invazní armáda pod vedením Pichegrua táhla po zamrzlých nizozemských řekách a nizozemská flotila byla uvězněna v ledu v přístavu Den Helder.

Mořský led obklopující Island se táhl na míle daleko všemi směry a uzavřel přístavy pro lodní dopravu. Počet obyvatel Islandu klesl na polovinu, což však mohlo být způsobeno fluorózou kostry po výbuchu sopky Laki v roce 1783.[29] Island také trpěl neúrodou obilovin a lidé se odklonili od stravy založené na obilí.[30] Severské kolonie v Grónsku vyhladověly a zanikly počátkem 15. století kvůli neúrodě a neschopnosti udržet dobytek během stále krutějších zim. Od roku 1410 do 20. let 17. století bylo Grónsko z velké části odříznuto ledem.[31]

Mezi lety 1620 a 1740 došlo v Yzeronské pánvi ve francouzském Centrálním masivu k fázi poklesu říční činnosti. Předpokládá se, že tento pokles fluviální aktivity souvisí s několikaletou fází sucha v západním Středomoří.[32]

V jihozápadní Evropě způsobila negativní severoatlantická oscilace v kombinaci se zvýšenou ariditou během malé doby ledové nárůst usazování sedimentů poháněných větrem.[33]

Ve své knize z roku 1995 uvedl anglický klimatolog Hubert Lamb (1913–1997), že v mnoha letech „sněžilo mnohem více, než bylo zaznamenáno předtím nebo potom, a sníh ležel na zemi po mnoho měsíců déle než dnes“.[34] V portugalském Lisabonu byly sněhové bouře mnohem častější než dnes a jedna zima v 17. století přinesla osm sněhových bouří.[35] Mnohá jara a léta byla chladná a vlhká, ale s velkou variabilitou mezi jednotlivými roky a skupinami let. To se projevilo zejména během „grindelwaldského výkyvu“ (1560–1630); fáze rychlého ochlazení byla spojena s nevyzpytatelnějším počasím, včetně zvýšeného výskytu bouřek, nesezónních sněhových bouří a sucha.[36] Pěstitelské postupy v celé Evropě musely být změněny, aby se přizpůsobily zkrácenému a méně spolehlivému vegetačnímu období, a v mnoha letech panoval nedostatek a hladomor. Jedním z nich byl Velký hladomor v letech 1315–1317, který však mohl nastat ještě před Malou dobou ledovou.“[37] Podle Elizabeth Ewan a Janay Nugent „si hladomory ve Francii 1693–1694, Norsku 1695–1696 a Švédsku 1696–1697 vyžádaly zhruba 10 % obyvatel každé země. V Estonsku a Finsku v letech 1696–1697 se ztráty odhadují na pětinu, respektive třetinu obyvatelstva těchto zemí.“[38] V některých severních oblastech zaniklo vinařství a bouře způsobily vážné záplavy a ztráty na životech. Některé z nich měly za následek trvalou ztrátu velkých ploch půdy z dánského, německého a nizozemského pobřeží.[34]

Lovci ve sněhu, Pieter Bruegel, 1565
Zimní krajina s bruslaři, Hendrick Avercamp, 1608

Houslař Antonio Stradivari vyráběl své nástroje během malé doby ledové. Chladnější klima mohlo způsobit, že dřevo, které používal na své housle, bylo hustší než v teplejších obdobích a přispělo k tónu jeho nástrojů.[39] Podle britského historika vědy Jamese Burkea (* 1936) inspirovalo toto období takové novinky v každodenním životě, jako bylo rozšířené používání knoflíků a knoflíkových dírek a také pletení spodního prádla na zakázku pro lepší zakrytí a izolaci těla. Byly vynalezeny komíny, které nahradily otevřené ohniště uprostřed společných síní, aby domy s více místnostmi měly oddělené pány od služebnictva.[40]

Kniha The Little Ice Age (Malá doba ledová) od britského antropologa Briana Fagana (* 1936) z Kalifornské univerzity v Santa Barbaře popisuje těžký úděl evropských rolníků od roku 1300 do roku 1850: hladomory, podchlazení, chlebové vzpoury a vzestup despotických vůdců, kteří brutálně týrali stále více zneuznané rolnictvo. Koncem 17. století došlo k dramatickému úpadku zemědělství: „Alpští vesničané se živili chlebem z rozemletých ořechových skořápek smíchaných s ječnou a ovesnou moukou.“[41] Německý historik Wolfgang Behringer (* 1956) spojil intenzivní epizody honu na čarodějnice v Evropě s neúspěchy v zemědělství během malé doby ledové.[42]

Kniha The Frigid Golden Age (Ledová zlatá doba) od holandského historika životního prostředí Dagomara Degroota (* 1985) z Georgetownské univerzity poukazuje na to, že některé společnosti během malé doby ledové prosperovaly, ale jiné upadaly. Zejména malá doba ledová proměnila prostředí v okolí Nizozemské republiky a usnadnila jeho využívání v obchodě a konfliktech. Nizozemci byli odolní, dokonce přizpůsobiví, tváří v tvář počasí, které ničilo sousední země. Obchodníci využívali neúrody, vojenští velitelé využívali měnící se větrné poměry a vynálezci vyvíjeli technologie, které jim pomáhaly z chladu profitovat. Nizozemský zlatý věk 17. století proto vděčil za mnohé flexibilitě svých obyvatel, kteří se dokázali vyrovnat s měnícím se klimatem.[43]

Kulturní reakce

Historici tvrdí, že kulturní reakce na důsledky malé doby ledové v Evropě spočívaly v násilném hledání obětního beránka.[44][45][46][42][47] Dlouhotrvající chladná a suchá období přinesla mnoha evropským komunitám sucho a měla za následek špatný růst úrody, špatné přežívání hospodářských zvířat a zvýšenou aktivitu patogenů a přenašečů nemocí.[48] Nemoci zesílily za stejných podmínek, za jakých vznikla nezaměstnanost a ekonomické potíže: v dlouhých chladných a suchých obdobích. Nemoci a nezaměstnanost vytvářely smrtící pozitivní zpětnou vazbu.[48] Přestože komunity měly některá řešení nouzové siutace, například lepší směsi plodin, nouzové zásoby obilí a mezinárodní obchod s potravinami, ne vždy se ukázaly jako účinné.[44] Komunity se často vymstily prostřednictvím násilných trestných činů, včetně loupeží a vražd. Přibývalo také obvinění ze sexuálních deliktů, jako bylo cizoložství, zoofilie a znásilnění.[45] Evropané hledali vysvětlení pro hladomor, nemoci a sociální nepokoje, které zažívali, a obviňovali nevinné. Důkazy z několika studií ukazují, že nárůst násilných činů proti marginalizovaným skupinám, které byly považovány za příčinu malé doby ledové, se překrývá s roky obzvláště chladného a suchého počasí.[42][44][46]

Jedním z příkladů násilného obětního beránka, k němuž došlo během malé doby ledové, bylo obnovení čarodějnických procesů. Oster (2004) a Behringer (1999) tvrdí, že obnovení čarodějnictví přinesl klimatický pokles. Před malou dobou ledovou bylo čarodějnictví považováno za bezvýznamný zločin a oběti byly obviňovány jen zřídka.[42] Od 80. let 13. století, právě když začala malá doba ledová, však evropské obyvatelstvo začalo spojovat magii a počasí.[43] První systematické hony na čarodějnice začaly ve 30. letech 14. století a v 80. letech 14. století se všeobecně věřilo, že za špatné počasí by měly být zodpovědné čarodějnice.[44] V roce 1480 se v Evropě objevily první hony na čarodějnice.[42] Čarodějnice byly obviňovány z přímých i nepřímých důsledků malé doby ledové: epidemií dobytka, krav, které dávaly příliš málo mléka, pozdních mrazů a neznámých nemocí.[43] Obecně lze říci, že počet čarodějnických procesů rostl s poklesem teploty a procesů naopak ubývalo, když teplota rostla.[44][45] Vrcholy pronásledování čarodějnic se překrývají s hladovými krizemi, které nastaly v letech 1570 a 1580, přičemž druhá z nich trvala deset let.[45] Procesy se zaměřovaly především na chudé ženy, z nichž mnohé byly vdovy. Ne všichni souhlasili s tím, že by čarodějnice měly být pronásledovány za vytváření počasí, ale tyto spory se primárně nesoustředily na to, zda čarodějnice existují, ale na to, zda mají čarodějnice schopnost ovládat počasí.[42][43] Katolická církev v raném středověku tvrdila, že čarodějnice nemohou ovládat počasí, protože jsou smrtelníci, nikoliv Bůh, ale v polovině 13. století už většina lidí souhlasila s myšlenkou, že čarodějnice mohou ovládat přírodní síly.[43][44]

Také Židé byli obviňováni ze zhoršení klimatu během malé doby ledové.[45][46][47] Západoevropské státy zažily vlny antisemitismu, namířeného proti hlavní náboženské menšině v jejich jinak křesťanských společnostech.[46] Mezi Židy a počasím neexistovala přímá souvislost; byli obviňováni pouze z nepřímých důsledků, jako byly nemoci.[47] Z vypuknutí černé smrti byli často obviňováni Židé. V západoevropských městech bylo v průběhu roku 1300 vyvražďováno židovské obyvatelstvo, aby se zastavilo šíření moru.[45] šířily se zvěsti, že Židé buď sami otravují studny, nebo říkají malomocným, aby studny otrávili.[45] Aby unikli pronásledování, někteří Židé konvertovali ke křesťanství, zatímco jiní emigrovali do Osmanské říše, Itálie nebo Svaté říše římské, kde se setkali s větší tolerancí.[45]

Některé skupiny obyvatel obviňovaly z chladných období a z nich plynoucího hladomoru a nemocí během malé doby ledové všeobecnou boží nelibost,[46] kterou na sebe při pokusech o vyléčení vzaly jednotlivé skupiny obyvatelstva. V Německu byla zavedena nařízení týkající se činností, jako je hazard a pití alkoholu, která neúměrně postihovala nižší vrstvy, a ženám bylo zakázáno ukazovat kolena.[46] Další nařízení se týkala širšího obyvatelstva, například zákazu tance, sexuálních aktivit a umírněného příjmu jídla a pití.[47] V Irsku katolíci ze špatného počasí vinili reformaci. Annals of Loch Cé ve svém zápisu z roku 1588 popisuje sněhovou bouři uprostřed léta tak, že „divoké jablko nebylo větší než každý jeho kámen“, a viní z ní přítomnost „zlého, kacířského biskupa v Oilfinnu“, protestantského biskupa z Elphinu Johna Lynche.[49][50]

Obecná krize 17. století

Všeobecná krize 17. století v Evropě byla obdobím nepříznivého počasí, neúrody, hospodářských potíží, extrémního násilí mezi skupinami a vysoké úmrtnosti, které souvisely s malou dobou ledovou. Epizody sociální nestability sledují ochlazení s časovým odstupem až 15 let a mnohé přerostly v ozbrojené konflikty, jako například třicetiletá válka (1618–1648),[51] která začala jako válka o následnictví českého trůnu. Olej do ohně přililo nepřátelství mezi protestanty a katolíky ve Svaté říši římské (dnešním Německu). Brzy přerostla v obrovský konflikt, do kterého se zapojily všechny hlavní evropské mocnosti a který zpustošil velkou část Německa. Když válka skončila, v některých oblastech Svaté říše římské klesl počet obyvatel až o 70 %.[52]

"Únor" z kalendáře Les Très Riches Heures du duc de Berry, 1412–1416

Severní Amerika

První evropští objevitelé a osadníci Severní Ameriky zaznamenali mimořádně kruté zimy. Podle Lamba například Samuel Champlain v červnu 1608 zaznamenal na březích Hořejšího jezera led. Evropané i domorodé obyvatelstvo trpěli nadměrnou úmrtností v Maine během zimy 1607–08 a extrémní mrazy byly mezitím zaznamenány v osadě Jamestown ve Virginii.[34] Domorodí Američané v reakci na nedostatek potravin vytvářeli ligy.[31] V deníku Pierra de Troyes, Chevaliera de Troyes, který v roce 1686 vedl výpravu do Jamesova zálivu, je zaznamenáno, že záliv byl ještě 1. července posetý takovým množstvím plovoucího ledu, že se za něj mohl schovat ve své kánoi.[53] V zimě roku 1780 zamrzl newyorský přístav, což umožnilo lidem projít se z ostrova Manhattan na ostrov Staten Island.

Rozsah horských ledovců byl zmapován koncem 19. století. V severním a jižním mírném pásmu byla nadmořská výška rovnovážné linie (hranice oddělující zóny čisté akumulace od zón čisté ablace) asi o 100 metrů nižší než v roce 1975.[54] V národním parku Glacier se poslední epizoda postupu ledovce odehrála na přelomu 18. a 19. století.[55] V roce 1879 známý přírodovědec John Muir zjistil, že ledovec v Glacier Bay ustoupil o 77 km. V Chesapeake Bay v Marylandu byly velké teplotní výkyvy pravděpodobně spojeny se změnami v síle severoatlantické termohalinní cirkulace.[56]

Protože malá doba ledová nastala v době evropské kolonizace Ameriky, odradila mnoho prvních kolonizátorů, kteří očekávali, že klima Severní Ameriky bude podobné klimatu Evropy v podobných zeměpisných šířkách. Zjistili, že Severní Amerika, přinejmenším v oblasti, která se později stala Kanadou a severní částí Spojených států, má teplejší léta a chladnější zimy než Evropa. Tento vliv ještě zhoršila malá doba ledová a nepřipravenost vedla ke kolapsu mnoha raných evropských osad v Severní Americe.

Historici se shodují, že když se kolonisté usadili v Jamestownu, bylo to jedno z nejchladnějších období za posledních 1000 let. Sucho bylo v Severní Americe problémem i během malé doby ledové a osadníci dorazili do Roanoke v době největšího sucha za posledních 800 let. Studie letokruhů stromů provedené Arkansaskou univerzitou zjistily, že mnoho kolonistů dorazilo na začátku sedmiletého sucha. Sucha také snížila počet indiánských obyvatel a vedla ke konfliktům kvůli nedostatku potravin. Angličtí kolonisté v Roanoke donutili domorodé Američany z kmene Ossomocomucků, aby se s nimi podělili o vyčerpané zásoby. To vedlo k válce mezi oběma skupinami a indiánská města byla zničena. Tento cyklus se v Jamestownu opakoval ještě mnohokrát. Kombinace bojů a chladného počasí vedla také k šíření nemocí. Chladnější počasí napomáhalo rychlejšímu rozvoji parazitů, které Evropané přinesli v komárech. To následně vedlo k mnoha úmrtím na malárii mezi původními obyvateli Ameriky.[57]

V roce 1642 Thomas Gorges napsal, že v letech 1637–1645 zažívali kolonisté v Maine (tehdy součást Massachusetts) strašlivé povětrnostní podmínky. V červnu 1637 byly teploty tak vysoké, že řada evropských osadníků zemřela; cestovatelé byli nuceni cestovat v noci, aby se ochladili. Gorges také napsal, že zima v letech 1641–42 byla „pronikavě nesnesitelná“ a že žádný Angličan ani domorodý Američan nikdy nic podobného nezažil. Uvedl také, že Massachusettský záliv zamrzl, kam až člověk dohlédl, a že tam, kde dříve jezdily lodě, se nyní proháněly koňské povozy. Uvedl, že léta 1638 a 1639 byla velmi krátká, chladná a vlhká, což na několik let umocnilo nedostatek potravin. Aby toho nebylo málo, na úrodě se přiživovali živočichové jako housenky a holubi a ničili úrodu. Každý rok, o kterém Gorges psal, se vyznačoval neobvyklými výkyvy počasí, včetně velkého množství srážek, sucha a extrémního chladu nebo horka.[58]

Mnozí obyvatelé Severní Ameriky měli o extrémním počasí své vlastní teorie. Kolonista Ferdinando Gorges vinil z chladného počasí studené oceánské větry. Humphrey Gilbert se snažil vysvětlit ledové a mlhavé počasí na Newfoundlandu tím, že Země nasává studené páry z oceánu a táhne je na západ. Mnozí další měli vlastní teorie o tom, proč je v Severní Americe mnohem chladněji než v Evropě; jejich pozorování a hypotézy nabízejí pohled na dopady malé doby ledové v Severní Americe.[59]

Sezónní hodnoty teplot ve střední Anglii. Na horním panelu jsou znázorněna čísla skupin slunečních skvrn: šedá oblast ukazuje roční hodnoty z teleskopických pozorování, fialová čára jejich jedenáctileté klouzavé průměry a zelená čára hodnoty odvozené z množství kosmogenního izotopu uhlíku-14 v kmenech stromů. Druhý panel ukazuje zimní hodnoty teploty ve střední Anglii, což jsou průměry za prosinec, leden a únor. Třetí panel ukazuje letní hodnoty, které jsou průměrem za červen, červenec a srpen. Na spodním panelu je uvedena aerosolová optická hloubka, která ukazuje množství sopečného prachu z ledovcových jader. Svislé fialové čáry jsou roky, kdy se na Temži v Londýně konaly mrazové slavnosti, a svislé oranžové čáry jsou roky, kdy byl tamní led hlášen jako dostatečně silný, aby se po něm dalo chodit. První azurová čára je datum odstranění starého londýnského mostu a jezu a druhá je dokončení nábřeží: obě tyto události na řece zvýšily průtok a ukončily zamrzání Temže. Všechny zdroje dat jsou uvedeny v odkazu.[60]

Teplotní řada pro střední Anglii

Středoanglický teplotní záznam (CET) je nejdelší existující přístrojový teplotní záznam na světě, který sahá nepřetržitě od současnosti až do roku 1659. Začíná tedy uprostřed malé doby ledové, ať už je její interval definován jakkoli. Střednědobá teplota má velmi důležité důsledky pro naše chápání malé doby ledové. Data CET ukazují, že během malé doby ledové se zvýšil výskyt mimořádně chladných zim a tyto roky se shodovaly s roky, kdy se na Temži konaly mrazové poutě a kdy byly jinde v Evropě zaznamenány mimořádně nízké teploty.[28] Dobře se také shodují s odhady paleoklimatu v průměrných trendech.[61] V záznamu CET však zimy během malé doby ledové nebyly nepolevující. Například nejchladnější zima (definovaná průměrnou teplotou za prosinec, leden a únor) v celé datové řadě CET je z roku 1684 (rok jednoho z nejznámějších mrazů), avšak pátá nejteplejší zima v celé dosavadní datové řadě CET nastala o pouhé dva roky později, v roce 1686. Navíc letní teploty nejsou během malé doby ledové výrazně sníženy, a pokud ano, tyto nižší teploty vysoce korelují s vulkanickými erupcemi.[28] Údaje CET tedy silně argumentují, že malá doba ledová, přinejmenším v Evropě, by měla být považována za období zvýšeného výskytu mimořádně chladných zim, a tedy nižších průměrných teplot, a nikoliv za interval nepřetržitého chladu.[28]

Možné příčiny

Vědci předběžně určili sedm možných příčin malé doby ledové: orbitální cykly, snížená sluneční aktivita, zvýšená sopečná činnost, změna proudění v oceánech,[62] výkyvy lidské populace v různých částech světa způsobující zalesňování nebo odlesňování a přirozená proměnlivost globálního klimatu.

Orbitální cykly

Podrobnější informace naleznete v článku Milankovičovy cykly.

Orbitální síly způsobené cykly oběhu Země kolem Slunce způsobily za posledních 2000 let dlouhodobý trend ochlazování severní polokoule, který pokračoval i ve středověku a v malé době ledové. Rychlost ochlazování Arktidy je zhruba 0,02 °C za století.[63] Tento trend by mohl extrapolovaně pokračovat i v budoucnosti a případně vést k úplné době ledové, ale instrumentální teplotní záznamy 20. století ukazují náhlý obrat tohoto trendu, přičemž nárůst globálních teplot je připisován emisím skleníkových plynů.[63]

Maunderovo minimum ve 400leté historii počtu slunečních skvrn
Počet slunečních skvrn v porovnání s teplotní anomálií na severní polokouli (NH). Na horním panelu je znázorněno jedenáctileté vyhlazené skupinové číslo slunečních skvrn z teleskopických pozorování a číslo slunečních skvrn odvozené z množství kosmogenních izotopů uhlíku-14 v kmenech stromů. Dolní panel ukazuje teplotní anomálii severní polokoule (NH) (vzhledem k úrovni roku 1990) z různých paleoklimatických ukazatelů: černá čára je střední hodnota a barvy udávají pravděpodobnostní rozdělení nejistoty. Modré tečky představují instrumentální záznam. Přerušované čáry označují začátek a konec malé doby ledové definované úrovní teplotní anomálie (NH) -0,16 stupně Celsia. Všechny zdroje dat jsou popsány v referencích[61] a [60].

Sluneční aktivita

Sluneční aktivita zahrnuje všechny poruchy na Slunci, jako jsou sluneční skvrny a sluneční erupce, které souvisejí s proměnlivým magnetickým polem slunečního povrchu a sluneční atmosféry (koróny). Protože platí Alfvénův teorém, je koronální magnetické pole vtahováno slunečním větrem do heliosféry. Nepravidelnosti v tomto heliosférickém magnetickém poli chrání Zemi před galaktickým kosmickým zářením tím, že je rozptylují, což vědcům umožňuje sledovat sluneční aktivitu v minulosti analýzou izotopů uhlíku-14 nebo berylia-10, které vznikají při dopadu kosmického záření na atmosféru a které se ukládají v pozemských rezervoárech, jako jsou letokruhy stromů a ledová pokrývka. V intervalech 1400–1550 (Spörerovo minimum) a 1645–1715 (Maunderovo minimum) byly zaznamenány velmi nízké úrovně sluneční aktivity a oba tyto intervaly spadají do období malé doby ledové nebo se s ním alespoň překrývají podle většiny definic. Sluneční aktivita odvozená z kosmogenních izotopů však byla mezi Spörerovým minimem a Maunderovým minimem stejně vysoká jako kolem roku 1940,[64] přesto je tento interval rovněž v rámci malé doby ledové. Proto jakýkoli vztah mezi sluneční aktivitou a malou dobou ledovou není zdaleka jednoduchý.

Studie Dmitrije Mauquoye a kol. potvrdila, že na počátku Spörerova minima prudce vzrostla míra produkce uhlíku-14.[65] Tito autoři tvrdili, že tento nárůst se shoduje s prudkým poklesem teplot odvozeným z evropských rašelinišť. Tento pokles teploty je patrný i v průměrných teplotách severní polokoule odvozených z celé řady paleoklimatických indikátorů, ale načasování začátku Spörerova minima je ve skutečnosti asi o 50 let dříve. 50leté zpoždění reakce je možné, ale není v souladu s následnými změnami odvozenými ze sluneční aktivity a průměrné teploty severní polokoule.[66] Například vrchol sluneční aktivity mezi Spörerovým minimem a Maunderovým minimem je 50 let po jediném vrcholu průměrné teploty severní polokoule, se kterým by mohl být spojen.

Sopečná činnost

V článku z roku 2012 Miller a kol. spojují malou dobu ledovou s „neobvyklou 50letou epizodou se čtyřmi velkými explozivními erupcemi bohatými na síru, z nichž každá měla globální zatížení sírany >60 Tg“, a poznamenávají, že „velké změny slunečního záření nejsou nutné“.[8]

Po celou dobu malé doby ledové byla zvýšená sopečná činnost.[67] Při výbuchu sopky se její popel dostává vysoko do atmosféry a může se rozšířit na celou Zemi. Oblak popela blokuje část přicházejícího slunečního záření, což vede k celosvětovému ochlazení až dva roky po erupci. Při erupcích se také uvolňuje síra ve formě oxidu siřičitého. Když se oxid siřičitý dostane do stratosféry, změní se plyn na částice kyseliny sírové, které odrážejí sluneční záření. To dále snižuje množství záření dopadajícího na zemský povrch.[67]

Nedávná studie zjistila, že obzvláště silná erupce tropické sopky v roce 1257, pravděpodobně hory Samalas (předkalderová stavba aktivní hory Rinjani) poblíž hory Rinjani, obě na indonéském ostrově Lombok, následovaná třemi menšími erupcemi v letech 1268, 1275 a 1284, neumožnila klimatu zotavit se. To mohlo způsobit počáteční ochlazení a záhadná erupce v letech 1452/1453 vyvolala druhý puls ochlazení.[8] Chladná léta mohou být udržována zpětnou vazbou mezi mořem a oceánem ještě dlouho po odstranění sopečných aerosolů.

Mezi další sopky, které vybuchly v tomto období a mohly přispět k ochlazení, patří Billy Mitchell (asi 1580), Huaynaputina (1600), Mount Parker (1641), Long Island (Papua Nová Guinea) (asi 1660) a Laki (1783).[26] Erupce sopky Tambora v roce 1815, rovněž v Indonésii, zahalila atmosféru popelem a následující rok se stal známým jako Rok bez léta,[68] kdy byly v červnu a červenci hlášeny mrazy a sníh jak v Nové Anglii, tak v severní Evropě.

Termohalinní cirkulace neboli oceánský dopravní pás

Cirkulace oceánů

Na počátku 20. století bylo jako vysvětlení malé doby ledové navrženo zpomalení termohalinní cirkulace,[54][69][70] konkrétně oslabením severoatlantického gyru.[71][71] Cirkulace mohla být přerušena přílivem velkého množství sladké vody do severního Atlantiku a mohla být způsobena obdobím oteplování před malou dobou ledovou, které je známé jako středověké teplé období. [41][72][73] Někteří badatelé proto klasifikují malou dobu ledovou jako Bondovu událost.[74] Existují určité obavy, že by k přerušení termohalinní cirkulace mohlo dojít znovu v důsledku současného oteplení.[75][76]

Novější výzkumy naznačují, že celková atlantická meridionální cirkulace může být již nyní slabší, než byla během malé doby ledové,[76][77] nebo možná dokonce v průběhu minulého tisíciletí.[78] O současné síle AMOC stále vede silná debata,[79][80][81] tato zjištění činí souvislost mezi AMOC a malou dobou ledovou nepravděpodobnou. Některé výzkumy však místo toho naznačují, že se na malé době ledové podílelo mnohem lokálnější narušení konvekce v severním subpolárním gyru,[82] což je potenciálně důležité pro blízkou budoucnost, neboť menšina klimatických modelů předpokládá trvalý kolaps této konvekce podle některých scénářů budoucích klimatických změn.[83][84][85]

Snížení počtu lidí

Někteří badatelé navrhli, že vliv člověka na klima začal dříve, než se obvykle předpokládá, a že velký pokles populace v Eurasii a Americe tento vliv snížil a vedl k trendu ochlazování.

Černá smrt v Evropě

Odhaduje se, že černá smrt zabila 30–60 % evropské populace.[86] Celkově mohl mor ve 14. století snížit světovou populaci z odhadovaných 475 milionů na 350–375 milionů.[87] Trvalo 200 let, než se světová populace vrátila na předchozí úroveň.[88] William Ruddiman navrhl, že tyto velké úbytky populace v Evropě, východní Asii a na Blízkém východě způsobily pokles zemědělské činnosti. Ruddiman předpokládá, že v důsledku toho došlo k opětovnému zalesnění, které způsobilo dodatečný příjem oxidu uhličitého z atmosféry, což vedlo k ochlazení zaznamenanému během malé doby ledové.

Mongolské invaze

Studie oddělení globální ekologie Carnegie Institution z roku 2011 tvrdí, že mongolské invaze a výbojné výpravy, které trvaly téměř dvě století, přispěly ke globálnímu ochlazení tím, že vylidnily rozsáhlé oblasti a nahradily obdělávanou půdu lesem pohlcujícím uhlík.[89][90]

Zničení původních populací a biomasy Ameriky

William Ruddiman dále vyslovil hypotézu, že podobný účinek mohlo mít i snížení počtu obyvatel v Americe po zahájení kontaktu s Evropou v 16. století.[91][92] Podobně Koch a další v roce 1990 vyslovili domněnku, že když evropské dobývání a nemoci přinesené Evropany zabily až 90 % původních obyvatel Ameriky, mohlo se asi 50 milionů hektarů půdy vrátit do stavu divočiny, což způsobilo zvýšený příjem oxidu uhličitého.[93] Jiní badatelé podpořili vylidňování Ameriky jako faktor a tvrdili, že lidé tam vykáceli značné množství lesů, aby podpořili zemědělství, než příchod Evropanů způsobil populační kolaps.[94][95]

Richard Nevle, Robert Dull a jejich kolegové dále vyslovili domněnku, že antropogenní mýcení lesů sehrálo nejen roli při snižování množství uhlíku vázaného v neotropických lesích, ale také že požáry založené člověkem hrály hlavní roli při snižování biomasy v amazonských a středoamerických lesích před příchodem Evropanů a současným šířením nemocí během kolumbovské výměny.[96][97][98] Dull a Nevle vypočítali, že jen zalesňování tropických biomů Ameriky v letech 1500–1650 představovalo čistou sekvestraci uhlíku ve výši 2-5 Pg.[97] Brierley vyslovil domněnku, že příchod Evropanů do Ameriky způsobil masové úmrtí na epidemické nemoci, což způsobilo značné opuštění zemědělské půdy. To způsobilo návrat velkého množství lesů, které pohltily více CO2.[12] Studie sedimentárních jader a půdních vzorků dále naznačuje, že pohlcování CO2 prostřednictvím opětovného zalesňování v Americe mohlo přispět k malé době ledové.[99] Vylidňování souvisí s poklesem hladin CO2 pozorovaným v Law Dome v Antarktidě.[94]

Nárůst populace ve středních a vysokých zeměpisných šířkách

Předpokládá se, že během malé doby ledové mělo zvýšené odlesňování dostatečný vliv na albedo (odrazivost) Země, což způsobilo regionální a globální pokles teploty. Změny v albedu byly způsobeny rozsáhlým odlesňováním ve vysokých zeměpisných šířkách, které odhalilo více sněhové pokrývky, a tím zvýšilo odrazivost zemského povrchu, protože půda byla odlesněna pro zemědělské využití. Z této teorie vyplývá, že v průběhu malé doby ledové bylo odlesněno tolik půdy, že odlesňování je možnou příčinou změny klimatu.[100]

Bylo navrženo, že teorie intenzifikace využití půdy by mohla tento efekt vysvětlit. Tuto teorii původně navrhla Ester Boserupová a předpokládá, že zemědělství se rozvíjí pouze tehdy, když to vyžaduje počet obyvatel.[101] Navíc existují důkazy o rychlé populační a zemědělské expanzi, která by mohla být důvodem některých změn pozorovaných v klimatu během tohoto období.

O této teorii se stále spekuluje, a to z několika důvodů: především kvůli obtížnosti znovuvytvoření simulací klimatu mimo úzký soubor území v těchto regionech; nelze se tedy spoléhat na data, která by vysvětlovala rozsáhlé změny nebo zohledňovala širokou škálu dalších zdrojů klimatických změn v celosvětovém měřítku. Rozšířením prvního důvodu je skutečnost, že klimatické modely zahrnující toto období ukázaly nárůst a pokles teploty v globálním měřítku, to znamená, že klimatické modely neprokázaly odlesňování jako jedinou příčinu změny klimatu ani jako spolehlivou příčinu globálního poklesu teploty.[102]

Přirozená proměnlivost klimatu

Teplotní řada pro střední AngliiSpontánní výkyvy globálního klimatu by mohly vysvětlit proměnlivost klimatu v minulosti. Je velmi obtížné zjistit, jaká může být skutečná úroveň proměnlivosti z vnitřních příčin vzhledem k existenci dalších sil, jak bylo uvedeno výše, jejichž velikost nemusí být známa. Jedním z přístupů k hodnocení vnitřní variability je použití dlouhých integrací spřažených globálních klimatických modelů oceán-atmosféra. Jejich výhodou je, že vnější vlivy jsou známy jako nulové, nevýhodou však je, že nemusí plně odrážet realitu. Variace mohou být důsledkem chaotických změn v oceánech, atmosféře nebo interakcí mezi nimi.[103] Dvě studie dospěly k závěru, že prokázaná vnitřní variabilita nebyla dostatečně velká na to, aby vysvětlila malou dobu ledovou.[104] Kruté zimy v letech 1770 až 1772 v Evropě však byly přičítány anomálii v severoatlantické oscilaci.[105]

Odkazy

Referenceeditovat | editovat zdroj

V tomto článku byl použit překlad textu z článku Little Ice Age na anglické Wikipedii.

  1. 2019 years | Climate Lab Book. www.climate-lab-book.ac.uk online. cit. 2023-10-12. Údaje ukazují, že moderní období se od minulosti velmi liší. Často citované středověké teplé období a malá doba ledová jsou skutečné jevy, ale ve srovnání s nedávnými změnami jsou malé.. Dostupné online. 
  2. LE ROY LADURIE, Emmanuel; LE ROY LADURIE, Emmanuel. Times of feast, times of famine: a history of climate since the year 1000. New York: Farrar, Struas and Giroux 438 s. ISBN 978-0-374-52122-6. 
  3. a b c IPCC TAR WG1 2007, 2.3.3 Was there a “Little Ice Age” and a “Medieval Warm Period”?
  4. MATTHES, François E. Report of Committee on Glaciers, April 1939. Transactions, American Geophysical Union. 1939, roč. 20, čís. 4, s. 518. Matthes popsal ledovce v kalifornské Sierra Nevadě, které podle něj nemohly přežít hypsitermální období; jeho termín „malá doba ledová“ byl nahrazen termínem „neoglaciace“.. Dostupné online cit. 2023-10-12. ISSN 0002-8606. DOI 10.1029/TR020i004p00518. (anglicky) 
  5. MANN, Michael E. Encyclopedia of global environmental change. Příprava vydání Michael C MacCracken, Dr John S Perry. Chichester: J. Wiley & sons, 2002. Dostupné online. ISBN 978-0-471-97796-4. Kapitola Little Ice Age, s. 504–509. 
  6. LAMB, Hubert Horace. Climate: present, past and future. 1: Fundamentals and climate now. Reprinted. vyd. London: Methuen, 1972. 613 s. Dostupné online. ISBN 978-0-416-11530-7. S. 107. 
  7. a b Glossary. earthobservatory.nasa.gov online. 2023-10-12 cit. 2023-10-12. Dostupné online. (anglicky) 
  8. a b c d e MILLER, Gifford H.; GEIRSDÓTTIR, Áslaug; ZHONG, Yafang. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks: LITTLE ICE AGE TRIGGERED BY VOLCANISM. Geophysical Research Letters. 2012-01, roč. 39, čís. 2, s. n/a–n/a. Dostupné online cit. 2023-10-12. DOI 10.1029/2011GL050168. (anglicky) 
  9. GROVE, Jean M. Little Ice Ages: Ancient and Modern. s.l.: Taylor & Francis 440 s. Dostupné online. ISBN 978-0-415-33422-8. (anglicky) Google-Books-ID: 0ifEVJ6lytsC. 
  10. MATTHEWS, John A.; BRIFFA, Keith R. The ‘little ice age’: re‐evaluation of an evolving concept. Geografiska Annaler: Series A, Physical Geography. 2005-03, roč. 87, čís. 1, s. 17–36. Dostupné online cit. 2023-10-12. ISSN 0435-3676. DOI 10.1111/j.0435-3676.2005.00242.x. (anglicky) 
  11. KOCH, Alexander; BRIERLEY, Chris; MASLIN, Mark M. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quaternary Science Reviews. 2019-03, roč. 207, s. 13–36. Dostupné online cit. 2023-10-12. DOI 10.1016/j.quascirev.2018.12.004. (anglicky) 
  12. a b KOCH, Alexander; BRIERLEY, Chris; MASLIN, Mark M. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quaternary Science Reviews. 2019-03, roč. 207, s. 13–36. Dostupné online cit. 2023-10-12. DOI 10.1016/j.quascirev.2018.12.004. (anglicky) 
  13. How Genghis Khan cooled the planet. Mongabay Environmental News online. 2011-01-20 cit. 2023-10-12. Dostupné online. (anglicky) 
  14. IPCC AR5 WG1 2007, Section 6.6: The Last 2,000
  15. JONES, Phil D. History and Climate. s.l.: Springer Science & Business Media 320 s. Dostupné online. ISBN 978-0-306-46589-5. (anglicky) 
  16. REINTHALER, Johannes; PAUL, Frank. Using a Web Map Service to map Little Ice Age glacier extents at regional scales. Annals of Glaciology. 2023-06-02, s. 1–19. Dostupné online cit. 2023-10-12. ISSN 0260-3055. DOI 10.1017/aog.2023.39. (anglicky) 
  17. RealClimate: Worldwide glacier retreat. www.realclimate.org online. 2005-03-18 cit. 2023-10-12. Dostupné online. (anglicky) 
  18. OERLEMANS, J. Extracting a Climate Signal from 169 Glacier Records. Science. 2005-04-29, roč. 308, čís. 5722, s. 675–677. Dostupné online cit. 2023-10-12. ISSN 0036-8075. DOI 10.1126/science.1107046. (anglicky) 
  19. Mystery 13th Century eruption traced to Lombok, Indonesia. BBC News. 2013-09-30. Záhadná událost z roku 1257 byla tak rozsáhlá, že její chemické stopy jsou zaznamenány v ledu Arktidy i Antarktidy. Evropské středověké texty hovoří o náhlém ochlazení klimatu a o neúrodě.. Dostupné online cit. 2023-10-12. (anglicky) 
  20. Did the Spanish Empire Change Earth's Climate?. HISTORICALCLIMATOLOGY.COM online. cit. 2023-10-12. Dostupné online. (anglicky) 
  21. OGILVIE, A.E.J.; JÓNSSON, T. No title found. Climatic Change. 2001, roč. 48, čís. 1, s. 9–52. Dostupné online cit. 2023-10-12. DOI 10.1023/A:1005625729889. 
  22. HENDY, Erica J.; GAGAN, Michael K.; ALIBERT, Chantal A. Abrupt Decrease in Tropical Pacific Sea Surface Salinity at End of Little Ice Age. Science. 2002-02-22, roč. 295, čís. 5559, s. 1511–1514. Dostupné online cit. 2023-10-12. ISSN 0036-8075. DOI 10.1126/science.1067693. (anglicky) 
  23. PRICE, R.J. Book reviews: Porter, S.C. editor, 1984: Late Quaternary environments of the United States. Vol. 1 The late Pleistocene. London: Longman. xiv + 407 pp. £45.00. Progress in Physical Geography: Earth and Environment. 1985-06, roč. 9, čís. 2, s. 309–310. Dostupné online cit. 2023-10-12. ISSN 0309-1333. DOI 10.1177/030913338500900209. (anglicky) 
  24. IPCC AR6 WG1 2021
  25. TUCHMAN, Barbara Wertheim. A distant mirror: the calamitous 14th century. Harmondsworth: Penguin 714 s. ISBN 978-0-241-97297-7. S. 24. 
  26. a b COWIE, Jonathan. Climate change: biological and human aspects. 3. print. vyd. Cambridge: Cambridge Univ. Press 487 s. ISBN 978-0-521-69619-7, ISBN 978-0-521-87399-4. 
  27. a b DAVIES, Caroline. Part of River Thames freezes amid sub-zero temperatures. The Guardian. 2021-02-12. Dostupné online cit. 2023-10-12. ISSN 0261-3077. (anglicky) 
  28. a b c d LOCKWOOD, Mike; OWENS, Mat; HAWKINS, Ed. Frost fairs, sunspots and the Little Ice Age. Astronomy & Geophysics. 2017-04, roč. 58, čís. 2, s. 2.17–2.23. Dostupné online cit. 2023-10-12. ISSN 1366-8781. DOI 10.1093/astrogeo/atx057. (anglicky) 
  29. STONE, Richard. Iceland's Doomsday Scenario?. Science. 2004-11-19, roč. 306, čís. 5700, s. 1278–1281. Dostupné online cit. 2023-10-12. ISSN 0036-8075. DOI 10.1126/science.306.5700.1278. (anglicky) 
  30. "What Did They Eat? – Icelandic food from the Settlement through the Middle Ages". web.archive.org. Dostupné online. 
  31. a b SVS Archived Story: /svs/db/stories/iceage 20011207/index.html. svs.gsfc.nasa.gov online. cit. 2023-10-12. Dostupné online. 
  32. DELILE, Hugo; SCHMITT, Laurent; JACOB-ROUSSEAU, Nicolas. Headwater valley response to climate and land use changes during the Little Ice Age in the Massif Central (Yzeron basin, France). Geomorphology. 2016-03, roč. 257, s. 179–197. Dostupné online cit. 2023-10-12. DOI 10.1016/j.geomorph.2016.01.010. (anglicky) 
  33. COSTAS, Susana; JEREZ, Sonia; TRIGO, Ricardo M. Sand invasion along the Portuguese coast forced by westerly shifts during cold climate events. Quaternary Science Reviews. 2012-05, roč. 42, s. 15–28. Dostupné online cit. 2023-10-12. DOI 10.1016/j.quascirev.2012.03.008. (anglicky) 
  34. a b c LAMB, Hubert H. Climate, history and the modern world. 2. ed., repr., transf. to digital print. vyd. London: Routledge 433 s. ISBN 978-0-415-12734-9. S. 211–241. 
  35. Arquivo de eventos históricos – Página 4 – MeteoPT.com – Fórum de Meteorologia. web.archive.org. Dostupné online. 
  36. JONES, Evan T.; HEWLETT, Rose; MACKAY, Anson W. Weird weather in Bristol during the Grindelwald Fluctuation (1560–1630). Weather. 2021-04, roč. 76, čís. 4, s. 104–110. Dostupné online cit. 2023-10-12. ISSN 0043-1656. DOI 10.1002/wea.3846. (anglicky) 
  37. CULLEN, Karen J. Famine in Scotland: the 'ill years' of the 1690s. Edinburgh: Edinburgh University Press (Scottish historical review monographs series). ISBN 978-0-7486-3887-1. S. 20. 
  38. EWAN, Elizabeth; NUGENT, Janay. Finding the family in medieval and early modern Scotland. Aldershot Burlington (Vt.): Ashgate, 2008. (Women and gender in the early modern world). Dostupné online. ISBN 978-0-7546-6049-1. S. 153. 
  39. Stradivarius' sound 'due to Sun'. news.bbc.co.uk. 2003-12-17. Dostupné online cit. 2023-10-12. (anglicky) 
  40. 06 - Connections (TV series) - Thunder in the Skies - video Dailymotion. Dailymotion online. 2017-11-10 cit. 2023-10-12. Dostupné online. (anglicky) 
  41. a b FAGAN, Brian M. The Little Ice Age: how climate made history 1300 - 1850. New York, NY: Basic Books, 2000. 246 s. Dostupné online. ISBN 978-0-465-02272-4. 
  42. a b c d e f BEHRINGER, Wolfgang. No title found. Climatic Change. 1999, roč. 43, čís. 1, s. 335–351. Dostupné online cit. 2023-10-12. DOI 10.1023/A:1005554519604. 
  43. a b c d e DEGROOT, Dagomar. The frigid golden age: climate change, the Little Ice Age, and the Dutch Republic, 1560-1720. s.l.: s.n. (Studies in Environment and History). ISBN 978-1-108-41931-4, ISBN 978-1-108-41041-0. 
  44. a b c d e f OSTER, Emily. Witchcraft, Weather and Economic Growth in Renaissance Europe. Journal of Economic Perspectives. 2004-02-01, roč. 18, čís. 1, s. 215–228. Dostupné online cit. 2023-10-12. ISSN 0895-3309. DOI 10.1257/089533004773563502. (anglicky) 
  45. a b c d e f g h BEHRINGER, Wolfgang; BEHRINGER, Wolfgang. A cultural history of climate. Překlad Patrick Camiller. Cambridge: Polity 295 s. ISBN 978-0-7456-4529-2, ISBN 978-0-7456-4528-5. S. 121–167. 
  46. a b c d e f PARKER, Geoffrey. Global crisis: war, climate change and catastrophe in the seventeenth century. 1. publ. in paperback. vyd. New Haven, Conn.: Yale Univ. Press 871 s. ISBN 978-0-300-20863-4, ISBN 978-0-300-15323-1. S. 3–25. 
  47. a b c d LEHMANN, Hartmut. The Persecution of Witches as Restoration of Order: The Case of Germany, 1590s–1650s. Central European History. 1988-06, roč. 21, čís. 2, s. 107–121. Dostupné online cit. 2023-10-12. ISSN 1569-1616. DOI 10.1017/S000893890001270X. (anglicky) 
  48. a b POST, John D. Climatic Variability and the European Mortality Wave of the Early 1740s. The Journal of Interdisciplinary History. 1984, roč. 15, čís. 1, s. 1–30. Dostupné online cit. 2023-10-12. ISSN 0022-1953. DOI 10.2307/203592. 
  49. Part 12 of Annals of Loch Cé. celt.ucc.ie online. cit. 2023-10-12. Dostupné online. 
  50. MEIGS, Samantha A. The Reformations in Ireland: Tradition and Confessionalism, 1400–1690. s.l.: Springer 217 s. Dostupné online. ISBN 978-1-349-25710-2. (anglicky) Google-Books-ID: qcCxCwAAQBAJ. 
  51. ZHANG, David D.; LEE, Harry F.; WANG, Cong. The causality analysis of climate change and large-scale human crisis. Proceedings of the National Academy of Sciences. 2011-10-18, roč. 108, čís. 42, s. 17296–17301. Dostupné online cit. 2023-10-12. ISSN 0027-8424. DOI 10.1073/pnas.1104268108. PMID 21969578. (anglicky) 
  52. BERGHORN, Detlef; HATTSTEIN, M. Essential visual history of the world. Washington: National Geographic Society, 2007. Dostupné online. ISBN 978-1-4262-0091-5. S. 190–191. 
  53. KENYON, W.A.; TURNBULL, J.R. The Battle for James Bay. Roronto: Macmillan Company of Canada Limited., 1971. 
  54. a b BROECKER, Wallace S. Was a change in thermohaline circulation responsible for the Little Ice Age?. Proceedings of the National Academy of Sciences. 2000-02-15, roč. 97, čís. 4, s. 1339–1342. Dostupné online cit. 2023-10-12. ISSN 0027-8424. DOI 10.1073/pnas.97.4.1339. PMID 10677462. (anglicky) 
  55. Ice Ages. National Park Service. Dostupné online. 
  56. CRONIN, T. M; DWYER, G. S; KAMIYA, T. Medieval Warm Period, Little Ice Age and 20th century temperature variability from Chesapeake Bay. Global and Planetary Change. 2003-03-01, roč. 36, čís. 1, s. 17–29. Dostupné online cit. 2023-10-12. ISSN 0921-8181. DOI 10.1016/S0921-8181(02)00161-3. 
  57. WOLFE, Brendan. The Little Ice Age and Colonial Virginia. Encyclopedia Virginia online. cit. 2023-10-12. Dostupné online. (anglicky) 
  58. Climate and Mastery of the Wilderness in Seventeenth-Century New England. Colonial Society of Massachusetts online. cit. 2023-10-12. Dostupné online. (anglicky) 
  59. WHITE, Sam. Unpuzzling American Climate: New World Experience and the Foundations of a New Science. Isis. 2015, roč. 106, čís. 3, s. 544–566. Dostupné online cit. 2023-10-12. ISSN 0021-1753. DOI 10.1086/683166. 
  60. a b LOCKWOOD, Mike; OWENS, Mat; HAWKINS, Ed. Frost fairs, sunspots and the Little Ice Age. Astronomy & Geophysics. 2017-04, roč. 58, čís. 2, s. 2.17–2.23. Dostupné online cit. 2023-10-12. ISSN 1366-8781. DOI 10.1093/astrogeo/atx057. (anglicky) 
  61. a b LOCKWOOD, Mike; OWENS, Mathew J.; BARNARD, Luke A. Space climate and space weather over the past 400 years: 1. The power input to the magnetosphere. Journal of Space Weather and Space Climate. 2017, roč. 7, s. A25. Dostupné online cit. 2023-10-12. ISSN 2115-7251. DOI 10.1051/swsc/2017019. (anglicky) 
  62. WANAMAKER, Alan D.; BUTLER, Paul G.; SCOURSE, James D. Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nature Communications. 2012-06-12, roč. 3, čís. 1. Dostupné online cit. 2023-10-12. ISSN 2041-1723. DOI 10.1038/ncomms1901. PMID 22692542. (anglicky) 
  63. a b KAUFMAN, Darrell S.; SCHNEIDER, David P.; MCKAY, Nicholas P. Recent Warming Reverses Long-Term Arctic Cooling. Science. 2009-09-04, roč. 325, čís. 5945, s. 1236–1239. Dostupné online cit. 2023-10-12. ISSN 0036-8075. DOI 10.1126/science.1173983. (anglicky) 
  64. USOSKIN, Ilya G. A history of solar activity over millennia. Living Reviews in Solar Physics. 2017-12, roč. 14, čís. 1. Dostupné online cit. 2023-10-12. ISSN 2367-3648. DOI 10.1007/s41116-017-0006-9. (anglicky) 
  65. MAUQUOY, Dmitri; VAN GEEL, Bas; BLAAUW, Maarten. Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity. The Holocene. 2002-01, roč. 12, čís. 1, s. 1–6. Dostupné online cit. 2023-10-12. ISSN 0959-6836. DOI 10.1191/0959683602hl514rr. (anglicky) 
  66. LOCKWOOD, Mike; OWENS, Mathew J.; BARNARD, Luke A. Space climate and space weather over the past 400 years: 1. The power input to the magnetosphere. Journal of Space Weather and Space Climate. 2017, roč. 7, s. A25. Dostupné online cit. 2023-10-12. ISSN 2115-7251. DOI 10.1051/swsc/2017019. 
  67. a b ROBOCK, Alan. The "Little Ice Age": Northern Hemisphere Average Observations and Model Calculations. Science. 1979-12-21, roč. 206, čís. 4425, s. 1402–1404. Dostupné online cit. 2023-10-12. ISSN 0036-8075. DOI 10.1126/science.206.4425.1402. (anglicky) 
  68. Is the Meghalayan Event a Tipping Point in Geology?. The Wire online. cit. 2023-10-12. Dostupné online. 
  69. WANAMAKER, Alan D.; BUTLER, Paul G.; SCOURSE, James D. Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nature Communications. 2012-06-12, roč. 3, čís. 1. Dostupné online cit. 2023-10-12. ISSN 2041-1723. DOI 10.1038/ncomms1901. (anglicky) 
  70. A Chilling Possibility – NASA Science. web.archive.org. Dostupné online. 
  71. a b LAPOINTE, Francois; BRADLEY, Raymond S. Little Ice Age abruptly triggered by intrusion of Atlantic waters into the Nordic Seas. Science Advances. 2021-12-17, roč. 7, čís. 51. Dostupné online cit. 2023-10-12. ISSN 2375-2548. DOI 10.1126/sciadv.abi8230. PMID 34910526. (anglicky) 
  72. WILLIAMS, Matt. Planet Earth online. 2015-09-17 cit. 2023-10-12. Dostupné online. (anglicky) 
  73. PITTENGER, Richard F; GAGOSIAN, Robert B. Global Warming Could Have a Chilling Effect on the Military. Defense Horizons. Dostupné online cit. 2023-10-12. 
  74. BANERJI, Upasana S.; PADMALAL, D. Bond events and monsoon variability during Holocene—Evidence from marine and continental archives. s.l.: Elsevier Dostupné online. ISBN 978-0-323-90085-0. DOI 10.1016/b978-0-323-90085-0.00016-4. S. 293–339. (anglicky) DOI: 10.1016/B978-0-323-90085-0.00016-4. 
  75. LEAKE, Jonathan. Britain faces big chill as ocean current slows. The Times. Dostupné online. 
  76. a b RAHMSTORF, Stefan; BOX, Jason E.; FEULNER, Georg. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change. 2015-05, roč. 5, čís. 5, s. 475–480. Dostupné online cit. 2023-10-12. ISSN 1758-678X. DOI 10.1038/nclimate2554. (anglicky) 
  77. THORNALLEY, David J. R.; OPPO, Delia W.; ORTEGA, Pablo. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature. 2018-04, roč. 556, čís. 7700, s. 227–230. Dostupné online cit. 2023-10-12. ISSN 0028-0836. DOI 10.1038/s41586-018-0007-4. (anglicky) 
  78. CAESAR, L.; MCCARTHY, G. D.; THORNALLEY, D. J. R. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geoscience. 2021-03, roč. 14, čís. 3, s. 118–120. Dostupné online cit. 2023-10-12. ISSN 1752-0894. DOI 10.1038/s41561-021-00699-z. (anglicky) 
  79. KILBOURNE, K. Halimeda; WANAMAKER, Alan D.; MOFFA-SANCHEZ, Paola. Atlantic circulation change still uncertain. Nature Geoscience. 2022-03, roč. 15, čís. 3, s. 165–167. Dostupné online cit. 2023-10-12. ISSN 1752-0908. DOI 10.1038/s41561-022-00896-4. (anglicky) 
  80. CAESAR, L.; MCCARTHY, G. D.; THORNALLEY, D. J. R. Reply to: Atlantic circulation change still uncertain. Nature Geoscience. 2022-03, roč. 15, čís. 3, s. 168–170. Dostupné online cit. 2023-10-12. ISSN 1752-0908. DOI 10.1038/s41561-022-00897-3. (anglicky) 
  81. LATIF, Mojib; SUN, Jing; VISBECK, Martin. Natural variability has dominated Atlantic Meridional Overturning Circulation since 1900. Nature Climate Change. 2022-05, roč. 12, čís. 5, s. 455–460. Dostupné online cit. 2023-10-12. ISSN 1758-6798. DOI 10.1038/s41558-022-01342-4. (anglicky) 
  82. ARELLANO-NAVA, Beatriz; HALLORAN, Paul R.; BOULTON, Chris A. Destabilisation of the Subpolar North Atlantic prior to the Little Ice Age. Nature Communications. 2022-08-25, roč. 13, čís. 1, s. 5008. Dostupné online cit. 2023-10-12. ISSN 2041-1723. DOI 10.1038/s41467-022-32653-x. PMID 36008418. (anglicky) 
  83. SWINGEDOUW, Didier; BILY, Adrien; ESQUERDO, Claire. On the risk of abrupt changes in the North Atlantic subpolar gyre in CMIP6 models. Annals of the New York Academy of Sciences. 2021-11, roč. 1504, čís. 1, s. 187–201. Dostupné online cit. 2023-10-12. ISSN 0077-8923. DOI 10.1111/nyas.14659. (anglicky) 
  84. ARMSTRONG MCKAY, David I.; STAAL, Arie; ABRAMS, Jesse F. Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science. 2022-09-09, roč. 377, čís. 6611. Dostupné online cit. 2023-10-12. ISSN 0036-8075. DOI 10.1126/science.abn7950. (anglicky) 
  85. DVDMCKAY. Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer online. 2022-09-09 cit. 2023-10-12. Dostupné online. (anglicky) 
  86. ALCHON, Suzanne Austin. A pest in the land: new world epidemics in a global perspective. 1. ed. vyd. Albuquerque: University of New Mexico Press 214 s. (Diálogos series). ISBN 978-0-8263-2871-7, ISBN 978-0-8263-2870-0. S. 21. 
  87. BUREAU, US Census. Historical Estimates of World Population. Census.gov online. cit. 2023-10-12. Dostupné online. 
  88. PETER, Jay. A Distant Mirror. TIME Europe. Roč. 156, čís. 3. Dostupné online. 
  89. War, Plague No Match For Deforestation In Driving CO2 Buildup. Carnegie Institution for Science.. 2011-01-20. Dostupné online. 
  90. PONGRATZ, Julia; CALDEIRA, Ken; REICK, Christian H. Coupled climate–carbon simulations indicate minor global effects of wars and epidemics on atmospheric CO 2 between ad 800 and 1850. The Holocene. 2011-08, roč. 21, čís. 5, s. 843–851. Dostupné online cit. 2023-10-12. ISSN 0959-6836. DOI 10.1177/0959683610386981. (anglicky) 
  91. Europe's chill linked to disease. news.bbc.co.uk. 2006-02-27. Dostupné online cit. 2023-10-12. (anglicky) 
  92. RUDDIMAN, William F. The Anthropogenic Greenhouse Era Began Thousands of Years Ago. Climatic Change. 2003-12, roč. 61, čís. 3, s. 261–293. Dostupné online cit. 2023-10-12. ISSN 0165-0009. DOI 10.1023/B:CLIM.0000004577.17928.fa. (anglicky) 
  93. GRAEBER, David; WENGROW, David. The dawn of everything: a new history of humanity. Dublin: Penguin Books 691 s. ISBN 978-0-14-199106-1. 
  94. a b FAUST, Franz X.; GNECCO, Cristóbal; MANNSTEIN, Hermann. Evidence for the Postconquest Demographic Collapse of the Americas in Historical CO2 Levels. Earth Interactions. 2006-05-01, roč. 10, čís. 11, s. 1–14. Dostupné online cit. 2023-10-12. DOI 10.1175/EI157.1. (EN) 
  95. NEVRLE, R. J., et al. "Ecological-hydrological effects of reduced biomass burning in the neotropics after A.D. 1500. Geological Society of America Meeting, Minneapolis MN, 11 October 2011.. Dostupné online. 
  96. NEVLE, Richard J.; BIRD, Dennis K. Effects of syn-pandemic fire reduction and reforestation in the tropical Americas on atmospheric CO2 during European conquest. Palaeogeography, Palaeoclimatology, Palaeoecology. 2008-07-07, roč. 264, čís. 1, s. 25–38. Dostupné online cit. 2023-10-12. ISSN 0031-0182. DOI 10.1016/j.palaeo.2008.03.008. 
  97. a b DULL, Robert A.; NEVLE, Richard J.; WOODS, William I. The Columbian Encounter and the Little Ice Age: Abrupt Land Use Change, Fire, and Greenhouse Forcing. Annals of the Association of American Geographers. 2010-08-31, roč. 100, čís. 4, s. 755–771. Dostupné online cit. 2023-10-12. ISSN 0004-5608. DOI 10.1080/00045608.2010.502432. (anglicky) 
  98. NEVLE, R.J.; BIRD, D.K.; RUDDIMAN, W.F. Neotropical human–landscape interactions, fire, and atmospheric CO 2 during European conquest. The Holocene. 2011-08, roč. 21, čís. 5, s. 853–864. Dostupné online cit. 2023-10-12. ISSN 0959-6836. DOI 10.1177/0959683611404578. (anglicky) 
  99. BERGERON, Louis. Reforestation Helped Trigger Little Ice Age, Researchers Say. Stanford News. 2008. 
  100. ELLIS, Erle C.; KAPLAN, Jed O.; FULLER, Dorian Q. Used planet: A global history. Proceedings of the National Academy of Sciences. 2013-05-14, roč. 110, čís. 20, s. 7978–7985. Dostupné online cit. 2023-10-12. ISSN 0027-8424. DOI 10.1073/pnas.1217241110. PMID 23630271. (anglicky) 
  101. TURNER, B. L.; FISCHER-KOWALSKI, Marina. Ester Boserup: An interdisciplinary visionary relevant for sustainability. Proceedings of the National Academy of Sciences. 2010-12-21, roč. 107, čís. 51, s. 21963–21965. Dostupné online cit. 2023-10-12. ISSN 0027-8424. DOI 10.1073/pnas.1013972108. PMID 21135227. (anglicky) 
  102. PITMAN, A. J.; DE NOBLET-DUCOUDRÉ, N.; CRUZ, F. T. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophysical Research Letters. 2009-07-23, roč. 36, čís. 14. Dostupné online cit. 2023-10-12. ISSN 0094-8276. DOI 10.1029/2009GL039076. (anglicky) 
  103. FREE, Melissa; ROBOCK, Alan. Global warming in the context of the Little Ice Age. Journal of Geophysical Research: Atmospheres. 1999-08-27, roč. 104, čís. D16, s. 19057–19070. Dostupné online cit. 2023-10-12. ISSN 0148-0227. DOI 10.1029/1999JD900233. (anglicky) 
  104. HUNT, B. G. The Medieval Warm Period, the Little Ice Age and simulated climatic variability. Climate Dynamics. 2006-12-01, roč. 27, čís. 7, s. 677–694. Dostupné online cit. 2023-10-12. ISSN 1432-0894. DOI 10.1007/s00382-006-0153-5. (anglicky) 
  105. COLLET, Dominik. Hungern und handeln. Damals. 2020, čís. 6, s. 72–76. (německy) 

Související stránkyeditovat | editovat zdroj

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Malá_doba_ledová
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Ázerbájdžán
Újezd (Malá Strana)
Úmrtí v roce 2021
Úrodnost
Ústup ledovců od roku 1850
Úterý
Útok na Univerzitu v Garisse
Čáslav
Číslo
Čechy
Čeněk Junek
Černé moře
Černý uhlík
Červen
Červenec
Česká Wikipedie
České Budějovice
Český ježek
Český Krumlov
Český Těšín
Česko
Českobratrská církev evangelická
Československý svaz žen
Řád německých rytířů
Říšský sněm (Svatá říše římská)
Řím
Římské číslice
Řecko
Šestá hodnotící zpráva IPCC
Šetření energií
Španělé
Španělsko
Štýrské vévodství
Štýrský Hradec
Švédsko
Švýcarsko
Švališér
Železná opona
Železniční nehoda v Sekulích
Železniční trať Plzeň – Furth im Wald
Ženijní vojsko
Židé
Židovský kalendář
Životní prostředí
Žofie Dorotea Šlesvicko-Holštýnsko-Sonderbursko-Glücksburská
1. červenec
1. duben
1. listopad
1. prosinec
1. srpen
10. červenec
10. duben
10. pěší pluk
10. prosinec
10. srpen
1015
1099
11. červenec
11. duben
11. srpen
11. září
1103
1120
1199
12. únor
12. červen
12. červenec
12. říjen
12. březen
12. duben
12. květen
12. srpen
1240
1252
1276
13. únor
13. červen
13. červenec
13. říjen
13. březen
13. duben
13. květen
13. leden
13. srpen
1348
1385
14. červenec
14. říjen
14. duben
14. srpen
14. září
1410
1442
1453
1461
1473
1490
1496
1497
15. únor
15. červen
15. červenec
15. duben
15. prosinec
15. srpen
15. století
15. září
1504
1506
1521
1526
1553
1555
1559
1561
1562
1563
1564
1566
1567
1570
1579
1584
1593
1595
1597
16. únor
16. červenec
16. duben
16. listopad
16. prosinec
16. srpen
16. století
16. září
1606
1607
1615
1616
1618
1619
1623
1626
1632
1633
1634
1635
1636
1637
1638
1639
1640
1646
1647
1649
1651
1653
1656
1657
1663
1667
1669
1671
1672
1676
1679
1685
1689
1690
1694
1695
1697
1698
17. červenec
17. duben
17. květen
17. srpen
17. století
1701
1703
1706
1707
1708
1710
1711
1715
1716
1717
1718
1719
1725
1733
1737
1744
1745
1758
1762
1767
1772
1773
1775
1778
1779
1783
1789
1792
1793
1796
1797
1798
1799
18. únor
18. červenec
18. březen
18. duben
18. leden
18. pěší pluk
18. srpen
18. století
18. září
1800
1802
1803
1805
1806
1808
1810
1811
1813
1814
1815
1816
1817
1820
1821
1823
1824
1827
1828
1829
1833
1834
1835
1838
1840
1841
1844
1847
1849
1850
1857
1859
1862
1863
1864
1866
1867
1868
1869
1871
1872
1874
1875
1876
1877
1878
1879
1884
1885
1886
1888
1889
1890
1891
1892
1893
1895
1896
1897
1898
1899
19. únor
19. červenec
19. říjen
19. duben
19. květen
19. leden
19. srpen
19. století
19. září
1900
1902
1903
1904
1905
1906
1907
1909
1910
1912
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1932
1933
1934
1935
1937
1939
1940
1941
1943
1944
1945
1946
1947
1948
1949
1950
1952
1953
1958
1960
1961
1962
1963
1964
1966
1967
1968
1970
1973
1975
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1992
1993
1994
1995
1997
1998
1999
2. únor
2. červenec
2. duben
2. prosinec
2. srpen
2. tisíciletí
20. červenec
20. říjen
20. duben
20. květen
20. srpen
2001
2002
2003
2004
2010
2012
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
21. únor
21. červenec
21. duben
21. leden
21. prosinec
21. srpen
21. září
22. únor
22. červenec
22. říjen
22. duben
22. listopad
22. srpen
23. únor
23. červen
23. červenec
23. říjen
23. březen
23. duben
23. květen
23. leden
23. listopad
23. srpen
238
24. červenec
24. říjen
24. duben
24. květen
24. listopad
24. srpen
24. září
25. červen
25. červenec
25. duben
25. leden
25. listopad
25. srpen
25. září
26. únor
26. červen
26. červenec
26. březen
26. duben
26. květen
26. leden
26. srpen
27. červen
27. červenec
27. březen
27. duben
27. květen
27. srpen
28. červen
28. červenec
28. říjen
28. duben
28. květen
28. leden
28. listopad
28. prosinec
28. srpen
28. září
29. červenec
29. březen
29. duben
29. leden
29. srpen
29. září
3. červenec
3. březen
3. duben
3. květen
3. pěší pluk (Habsburská monarchie)
3. srpen
3. září
30. červen
30. červenec
30. březen
30. duben
30. květen
30. listopad
30. srpen
30. září
31. červenec
31. říjen
31. srpen
35. pěší pluk
4. únor
4. červen
4. červenec
4. březen
4. duben
4. květen
4. srpen
4. století
4. září
484 př. n. l.
5. únor
5. červenec
5. říjen
5. duben
5. srpen
5. září
6. červenec
6. duben
6. květen
6. listopad
6. srpen
7. únor
7. červenec
7. říjen
7. březen
7. duben
7. leden
7. srpen
7. září
70
748
8. únor
8. červenec
8. duben
8. květen
8. srpen
8. září
814
9. únor
9. červenec
9. říjen
9. březen
9. duben
9. květen
9. leden
9. listopad
9. srpen
9. září
972
988
Aš-Šabáb
Abatyše
Adam Benedikt Bavorovský
Adam Rodriguez
Adaptace na globální oteplování
Adolf Šimperský
Adolf Procházka
Adriaen van de Velde
Aerosol
Albánie
Albedo
Albrecht Fridrich Rakousko-Těšínský
Aleš Pikl
Aleš Svoboda (anglista)
Alexander Roslin
Alexandr Abaza
Alexandr I. Jagellonský
Alexandr Něvský
Alois Pravoslav Trojan
Amanda Gormanová
Ambroise Thomas
Americká válka za nezávislost
Amharsko
Andronikos IV.
Anglické království
Anna Stuartovna
Antarktida
Antonín Hardt
Antonio Barberini
Arad (Rumunsko)
Arcivévoda
Arcivévoda Ferdinand
Argentina
Argentinská invaze na Falklandy
Aristokrat
Arktida
Armádní sbor
Arménie
Arnošt Habsburský
Arnošt Okáč
Atlantská poledníková převratná cirkulace
Atmosféra Země
Atomové bombardování Hirošimy a Nagasaki
Atribuce probíhající klimatické změny
August Heinrich Hoffmann von Fallersleben
Automobilka
Autoritní kontrola
Aztécká říše
Bádensko-Württembersko
Bělení korálů
Bělorusko
Břežany (okres Znojmo)
Březen
Barbara Žofie Braniborská
Barokní architektura
Bazilika Svatého hrobu
Bazilika svatého Pavla za hradbami
Belgie
Berlín
Berlínská blokáda
Berlínská stěna
Berlínská zeď
Berlin Ostbahnhof
Berlin Wall
Beroun
Bertha Benzová
Beton
Bioenergie
Bitva na Něvě
Bitva u Castiglione
Bitva u Dolních Věstonic
Bitva u Grunwaldu
Bitva u Partizánské Ľupči
Bitva u Petrovaradína
Bitva u Wittstocku
Boček z Poděbrad
Body zvratu klimatického systému
Boeing B-29 Superfortress
Bohumír Kapoun ze Svojkova
Boleslav I.
Boleslav II.
Boris Hybner
Borys Antonenko-Davydovyč
Braniborská brána
Bratislava
Brno
Brusel
Budapešť
Burkina Faso
Císařská armáda (habsburská)
Císařský pěší pluk č. 28 (1769)
Cement
Chaluhy
Chauncey Delos Beadle
Cheb
Checkpoint Charlie
Chicago
Chile
Chlévský hnůj
Chorvatsko
Christianizace
Christian Knorr von Rosenroth
Chrudim
Cieszyn
Cilli
Cisterciáni
Cithara sanctorum
Citlivost klimatu
Clerfayt
CN Tower
Commons:Featured pictures/cs
Conquista
Conrad Aiken
Conrad Schumann
Covid-19
Cremona
Cyril Zapletal
Dělení Polska
Dělostřelectvo
Důlní neštěstí Copiapó 2010
Daimjó
Dalibor z Kozojed
Daniel Alexius z Květné
Daniel Speer
Daniel Stach
David Ferrer
Dengue
Dentista
Deodoro da Fonseca
Dezertifikace
De Ligne
Diecéze míšeňská
DIE ZEIT
Dionýz Štúr
Dioskúrové
Divize (vojenství)
Dlouhá turecká válka
Dobývání Aztécké říše
Doba meziledová
Dolar
Dolní Rakousy
Domažlice
Domenico Passignano
Dopady globálního oteplování
Doprava
Dragoun
Drahomíra Pithartová
Druhá světová válka
Duben
Dukla
Dusty Hill
East Side Gallery
Eduard Lederer
Eduard Orel
Egon Krenz
Egypt
Egyptské hieroglyfy
Ekonomické důsledky klimatických změn
Ekonomie globálního oteplování
Ekosystém
Elektřina
Elektromobil
Eliška Junková
El Niño – Jižní oscilace
Emilie Bednářová
Enže
Encyklopedie
Energetická účinnost
Environmentální migrace
Erich Honecker
Erich Mielke
Erika
Etiopie
Eutrofizace
Evžen Savojský
Evangelická církev
Evropa
Ewald Hering
Extrémy počasí
Fat Man
Ferdinand Bonaventura z Harrachu
Ferdinand II. Štýrský
Ferdinand III. Habsburský
Ferdinand III. Kastilský
Ferdinand IV. Habsburský
Ferdinand Maria Bavorský
Ferdinand z Ditrichštejna
Filip IV. Španělský
Film
Filozofická fakulta Jihočeské univerzity
Ford model A (1903)
Ford Motor Company
Forest Whitaker
Fosilní palivo
Francesco Maria Grimaldi
Francie
Francouzská národní knihovna
Francouzské království
Francouzsko-španělská válka
František Bernard Vaněk
František Buttula
František Harant
František Hošek
František Hochmann
František Jiří Mach
František Josef Kinský
František Minařík
František Pospíšil
František Svoboda (fotbalista)
František Taufer
František Vitásek (kněz)
František Vrbka
František z Ditrichštejna
Franz Anton Hillebrandt
Freiburg im Breisgau
Freon
Fytoplankton
Görlitz
Günter Schabowski
Gęsiówka
Gemeinsame Normdatei
Gent
Geoinženýrství
Georg Caspar Wecker
Giacomo Casanova
Giacomo Tritto
Gilbert du Motier, markýz de La Fayette
Globální ochlazování
Globální oteplování
Globální stmívání
Go-Momozono
Golfský proud
Google
Google+
Gorbačov
Gorice a Gradiška
Gotická architektura
Grónský ledovec
Grónsko
Grand Prix Německa
Gregoriánský kalendář
Gustave Lanson
Guy de Maupassant
Győr
Habsburská monarchie
Hans Christian Andersen
Harvardova univerzita
Hedvika Eleonora Holštýnsko-Gottorpská
Hegemonie
Herbert George Wells
Hernán Cortés
Hlavní strana
Hliník
Hnojivo
Hohenlohe
Horní Lužice
Horní Rakousy
Hospodářské zvíře
Hospodářský růst
Hovězí maso
Hradec Králové
Hugo Salus
Hulán
Husar
Hynek Albrecht
Ich bin ein Berliner
Igor Vsevoložskij
IHned.cz
Ilja Repin
Incident v Tonkinském zálivu
Indie
Infekční onemocnění
Infračervené záření
Innsbruck
Innviertel
Instrumentální záznamy teplot
International Standard Book Number
International Standard Serial Number
Internet Archive
Italská tažení francouzských revolučních válek
Italské království
Ivar Aasen
Jánoš Korvín
Ján Burius
Jaan Kaplinski
Jaderná energie
Jakub Antonín Zemek
Jaltská dohoda
James Hansen
Jana Andresíková
Jana Plodková
Jan Karel Hraše
Jan Karel Liebich
Jan Vanýsek
Japonsko
Jaromír Hořejš
Jaroslav Arnošt Trpák
Jaroslav Drobný (tenista)
Jaroslav Kladenský z Kladna
Jaroslav Volek
Jean-Baptiste Dumas
Jeruzalém
Jiří Adamíra
Jiří Dánský
Jiří Kovařík (historik)
Jiří Malenovský
Jiří Pavlov
Jiří z Poděbrad
Jiřina Hanušová
Jižní polokoule
Jihlava
Jihovýchodní Asie
Jindřiška Adéla Marie Savojská
Jindřiška Klímová
Jindřich
Jindřich Eckert
Jindřich Geisler
Jindřich I. Anglický
Jindřich IV.
Jindřich Ladislav Barvíř
Jindřich Mahelka
Jindřich Veselý
Jindřich Wankel
Jocelyn Bellová Burnellová
Johann Friedrich Struensee
Johann Joseph Würth
Johann Wilhelm Ludwig Gleim
John Fitzgerald Kennedy
Josef Šnejdárek
Josef Fischer (filosof)
Josef Hrnčíř
Josef Jaromír Štětka
Josef Kalousek
Josef Kovalčuk
Josef Obeth
Josef Patzel
Joseph Merrick
Judenburg
Jules Mazarin
Křesťanství
Křišťan
Kanada
Kancionál
Kapitulace u Világoše
Karel Škorpil
Karel Babánek
Karel I. Stuart
Karel Jiráček
Karel Nepraš
Karel Odstrčil
Karel starší ze Žerotína
Karel Veliký
Karel X. Gustav
Karola Vasa-Holstein-Gottorpská
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Narození 5. srpna
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Kathrin Zettelová
Kaunitz
KDU-ČSL
Keelingova křivka
Khevenhüller
Klášter
Klimatická bezpečnost
Klimatická krize
Klimatická spravedlnost
Klimatická stagnace
Klimatické změny
Klimatický model
Klimatický systém
Kluž
Kníže
Knin
Košice
Koks
Kolín
Koloběh uhlíku
Komunismus
Kondenzační jádro
Konflikt v Tigraji 2020
Kongresové centrum Praha
Kopaničářství
Korál
Korálový útes
Korunní země
Korutany
Kosmodrom Bajkonur
Kostel svatého Petra a Pavla (Görlitz)
Kouřim
Kraňské vévodství
Kremže
Kristýna I. Švédská
Kristián
Kroměříž
Kryštof z Gendorfu
Kryscina Cimanouská
Kukuřice
Kunhuta ze Šternberka
Kurt Biedenkopf
Kutná Hora
Květen
Kyjev
Kyjevská Rus
Kyrysník
Kyslík
Lalibela
Landstreitkräfte
Latina
Laura Mancini
Ledový příkrov
Leoben
Leonardo Leo
Leonid Iljič Brežněv
Leon Max Lederman
Leopold Chalupa
Leopold I.
Les
Lesní požár
Letní olympijské hry 2020
Levoča
Libéral Bruant
Library of Congress Control Number
Linec
Linford Christie
Lipník nad Bečvou
Litoměřice
Litomyšl
Lombardie
Los Angeles
Lužice
Lužická Nisa
Lublaň
Ludvík Kolek
Ludvík XIII.
Ludvík XVI.
Ludvík XVIII.
Ludwig von Benedek
Ludwig Wokurek
Luisa Oranžsko-Nasavská
Luteránství
Lvov
Lyon
Mírný pás
Mühlviertel
Městské okresy v Německu
Maďarská revoluce 1848–1849
Malárie
Malá doba ledová
Maledivy
Mannheim
Mantova
Maršál
Maria Sibylla Merianová
Marie Antonie Habsburská
Marie Dostalová
Marie Medicejská
Marie Terezie
Marie Waltrová
Marilyn Monroe
Markéta Habsburská (1651–1673)
Markýz
Mars 6
Martin Antonín Lublinský
Mart Stam
Marvin Gaye
Masakry ve varšavské čtvrti Wola
Masamune Date
Massachusetts
Matyáš Korvín
Maurice Papon
Maxmilián II. Emanuel
Maxmilián II. Habsburský
Mayové
Melchiorre Cafà
Methan
Metro (deník)
Mezivládní panel pro změnu klimatu
Michail I. Fjodorovič
Michal Pavlata (herec)
Michal Sendivoj ze Skorska
Milán
Milankovičovy cykly
Milavče
Miloš Navrátil (muzikolog)
Miloslav Stehlík
Miroslav Štěpán
Miroslav Jindra
Miroslav Liberda
Mistrovství světa ve fotbale 2018
Mlži
Mladá Boleslav
Mořské ptactvo
Mořský led
Mořský proud
Mokřad
Mons
Monzun
Morava
Moravské markrabství
Moskva
Most
Murad IV.
Muslimové
Náhorně-karabašská republika
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní garda (Francie)
Národní knihovna České republiky
Národní knihovna Izraele
Nürburgring
Němčina
Německá demokratická republika
Německo
Německo-polská státní hranice
Nadace Wikimedia
Nadmořská výška
Nagasaki
Namur
Napoleonovo tažení do Egypta a Sýrie
Napoleonské války
Napoleon Bonaparte
Natálie Kubištová
National Archives and Records Administration
Naum Gabo
Neil Armstrong
Nelson Mandela
Neugebauer
New York
Nicolas Boileau
Nicolas Malebranche
Niels Henrik Abel
Nikita Sergejevič Chruščov
Nikolaj Gavrilovič Spafarij
Nizozemská revoluce
Nizozemsko
Norsko
Nové Město na Moravě
Nový Bydžov
Nový Jičín
Nova Gorica
Novgorod
Novorossijsk
Oběžná dráha
Oblak
Obnovitelná energie
Ocel
Odlesňování
Odpadní voda
Okupační zóny Německa
Okyselování oceánů
Olomouc
Olympijské hry
Operace Bouře
Operace Bronse
Operace Pierce Arrow
Oradea
Organizace spojených národů
Organizace ukrajinských nacionalistů
Osijek
Osmanská říše
Osmansko-habsburské války
Osmdesátiletá válka
Ostřihom
Ostnatý drát
Oudenaarde
Oxford University Press
Oxid dusný
Oxid siřičitý
Oxid uhličitý
Ozbrojené síly Turecka
Ozon
Pád Berlínské zdi
Pád Konstantinopole
Pěchota
Přívalový déšť
Předměstí
Přemyšl
Přemysl Otakar II.
Přerov
Přimda (hrad)
Pšenice
Paříž
Pařížská dohoda
Pagekon obří
Palais du Luxembourg
Paleocenní–eocenní teplotní maximum
Palestina
Palmový olej
Památková rezervace
Památník Berlín-Hohenschönhausen
Pandemie covidu-19
Pandemie covidu-19 v Česku
Panoráma
Papež
Parní stroj
Patrick Ewing
Pavel Krbálek
Pavel Vízner
Pellegrini
Pequotská válka
Permafrost
Petra Faltýnová
Petr Štěpánek (pedagog)
Petr Lom
Petr Nováček
Petr Prouza
Petr Urbánek (básník)
Pevnina
Pforzheim
Piero Sraffa
Pierre-Esprit Radisson
Pierre Zaccone
Pietro Antonio Cesti
Pivovar
Ploutvonožci
Pluk
Plzeň
Počasí
Pošta
Požáry
Požáry v Austrálii (2019–2020)
Poddanství
Podvýživa
Pohoří
Pokus o vojenský převrat v Turecku 2016
Polární zesílení
Polština
Polní maršál
Polní myslivec
Polní zbrojmistr
Polské království
Polsko
Polsko-litevská unie (1569–1795)
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Německo
Portál:Obsah
Portál:Příroda
Portál:Rakousko
Portál:Sport
Portál:Válka
Port Stanley
Posádka
Postupimské náměstí
Potenciál globálního oteplování
Poušť
Povodeň
Průjem
Průmysl
Průmyslová revoluce
Praha
Prapor (jednotka)
Prapor Zośka
Prešov
Prevét
Program OSN pro životní prostředí
Propad uhlíku
Prostějov
Proxy data
Pruské Slezsko
Prusko
Prusko-rakouská válka
První křížová výprava
První světová válka
Q5086#identifiers
Q5086#identifiers|Editovat na Wikidatech
Rámcová úmluva OSN o změně klimatu
Rýže
Radiační působení
Rafail Levickij
Raimund Montecuccoli
Rakouské arcivévodství
Rakouské císařství
Rakouské Slezsko
Rakouské vévodství
Rakousko
Rakousko-uherská armáda
Rakousko-uherské vyrovnání
Rakousko-Uhersko
Rakovník
Referendum
Rembrandt
Renesanční architektura
Republika Srbská Krajina
Robotní patent (1775)
Rok
Roman Pokorný
Ronald Reagan
Ropa
Ropná skvrna
Rosetta
Rosettská deska
Rozdělení Berlína
Rozvojová země
Rudolf Štrubl
Rudolf Bergman
Rudolf I. Habsburský
Rudolf z Thunu
Ruské carství
Rusko
Sémiotika
Sírany
Sója (rod)
Safíovci
Safí I.
Sahara
Sakrální stavba
Sambir
Sankt Pölten
Sanok
Santorio Santorio
Sapér
SARS-CoV-2
Sasko
Scénáře socioekonomického vývoje
Scénáře socioekonomického vývoje#SSP1: Udržitelný vývoj (zelená cesta)
Scénáře socioekonomického vývoje#SSP3: Regionální rivalita (kamenitá cesta)
Scénáře socioekonomického vývoje#SSP5: Rozvoj založený na fosilních palivech (cesta po dálnici)
Schutzstaffel
Sedmihradsko
Segedín
Sekule
Senát Spojených států amerických
Sergej Adamovič Kovaljov
Severní Amerika
Severní polokoule
Seznam římských králů
Seznam olomouckých biskupů a arcibiskupů
Seznam pěších pluků císařsko-habsburské armády
Seznam světového dědictví v Africe#Etiopie
Skládka
Skleníkové plyny
Skleníkový efekt
Slaný
Slezská kuchyně
Slezsko
Slovo roku
Sluneční aktivita
Sluneční energie
Sluneční zářivost
Sníh
Socha Svobody
Sociální nerovnost
Solární panel
Songgotu
Sopečná erupce
Soubor:09 September - Percent of global area at temperature records - Global warming - NOAA cs.svg
Soubor:20210331 Global tree cover loss - World Resources Institute.svg
Soubor:Adamrodriguez05.JPG
Soubor:Battaillon – Parade-Ordnung 1749.png
Soubor:Battaillon – Schlacht-Ordnung 1749.png
Soubor:Berlin-wall-map en.svg
Soubor:Berlinermauer.jpg
Soubor:Berliner Mauer.jpg
Soubor:BerlinWall01b.jpg
Soubor:Berlin Wall (13-8-2006).jpg
Soubor:Berlin Wall 1961-11-20.jpg
Soubor:Berlin Wall death strip, 1977.jpg
Soubor:Berlin wall street sign crossed on bicycle 2011.jpg
Soubor:Berlin Wall victims monument.jpg
Soubor:Bleachedcoral.jpg
Soubor:BrandenburgerTorDezember1989.jpg
Soubor:Bundesarchiv Bild 173-1321, Berlin, Mauerbau.jpg
Soubor:Bundesarchiv Bild 183-1990-0325-012, Berlin, East Side Gallery.jpg
Soubor:Bundesarchiv Bild 183-87605-0002, Berlin, Mauerbau, US-Soldaten, Volkspolizisten.jpg
Soubor:Bundesarchiv Bild 183-88574-0004, Berlin, Mauerbau, Bauarbeiten.jpg
Soubor:Bundesarchiv Bild B 145 Bild-P061246.jpg
Soubor:Change in Average Temperature With Fahrenheit.svg
Soubor:CO2 Emissions by Source Since 1880.svg
Soubor:Daniel Stach (2016).jpg
Soubor:David Ferrer - Roland-Garros 2013 - 014.jpg
Soubor:Di05.jpg
Soubor:East German Guard - Flickr - The Central Intelligence Agency (cropped).jpg
Soubor:Endangered arctic - starving polar bear edit.jpg
Soubor:Fenster-des-Gedenkens-Berlin.jpg
Soubor:Ferdinand Maria of Bavaria.jpg
Soubor:Forest Whitaker.jpg
Soubor:František Pospíšil 2015.JPG
Soubor:GDMaupassant.jpg
Soubor:Globalni emise sklenikovych plynu a moznosti jejich snizeni CS.svg
Soubor:Globalni toky energie cs.svg
Soubor:Global Energy Consumption-cs.svg
Soubor:Greenhouse Gas Emissions by Economic Sector-cs.svg
Soubor:Greenhouse gas emission scenarios 01-cs.svg
Soubor:Guy de Maupassant fotograferad av Félix Nadar 1888.jpg
Soubor:Ilya Repin (1909).jpg
Soubor:Jana Plodková 2015.JPG
Soubor:Kaiserliches Kürassierregiment K 2 1734 Gudenushandschrift.jpg
Soubor:Karel starší ze Žerotína.png
Soubor:Kathrin Zettel.jpg
Soubor:Kennedy in Berlin.jpg
Soubor:Lambiel at the 2010 European Championships.jpg
Soubor:Launch of IYA 2009, Paris - Grygar, Bell Burnell cropped.jpg
Soubor:Lederer Eduard (1859-1944).jpg
Soubor:Leon M. Lederman.jpg
Soubor:Linford Christie 2009.png
Soubor:Mapa-zmeny-teploty.svg
Soubor:Marvin Gaye (1965).png
Soubor:Mauerrest an der Niederkirchnerstraße 2009.JPG
Soubor:Mauna Loa CO2 monthly mean concentrationCS.svg
Soubor:Mountain Pine Beetle damage in the Fraser Experimental Forest 2007.jpg
Soubor:Nagasakibomb.jpg
Soubor:National Park Service Thawing permafrost (27759123542).jpg
Soubor:Neil Armstrong pose.jpg
Soubor:NORTH POLE Ice (19626661335).jpg
Soubor:Orroral Valley Fire viewed from Tuggeranong January 2020.jpg
Soubor:Patrick Ewing Magic cropped.jpg
Soubor:Physical Drivers of climate change-cs.svg
Soubor:Projected Change in Temperatures-cs.svg
Soubor:Rembrandt Harmensz. van Rijn 141.jpg
Soubor:Sea level history and projections-cs.svg
Soubor:Soil moisture and climate change-cs.svg
Soubor:Structure of Berlin Wall-info-de.svg
Soubor:Svět knihy 2009 - Boris Hybner.jpg
Soubor:Teddy Sheringham 2012.jpg
Soubor:Thilafushi1.jpg
Soubor:Vývoj koncentrace CO2 v atmosféře.svg
Soubor:Vývoj průměrné světové teplotní anomálie.svg
Soubor:Vitus Bering.jpg
Soubor:West and East Berlin.svg
Soubor:Woodbridge Wimbledon 2004.jpg
Speciální:Kategorie
Speciální:Nové stránky
Speciální:Statistika
Speciální:Zdroje knih/80-7185-172-8
Speciální:Zdroje knih/9788090274556
Spojené státy americké
Spréva
Srážka vlaků u Milavčí
Srážky
Srpen
Státní hranice
Stéphane Lambiel
Střední Evropa
Středověké klimatické optimum
Staré Brno
Status quo
Stratosféra
Stryj
Studená válka
Subsaharská Afrika
Subtropický pás
Sucho
Světová banka
Světová zdravotnická organizace
Světskost
Svatá říše římská
Svijonožci
Sydney Camm
Těšín
Těžba uhlí
Třicetiletá válka
Tamuz
Tarnów
Teddy Sheringham
Tenis
Tenochtitlán
Teorie černé labutě
Tepelná kapacita
Tepelné čerpadlo
Teresa Pola
Ternopil
Terry Cooper
The Guardian
Thilafushi
Thurn
Tigrajská lidově osvobozenecká fronta
Titus
Tobiáš Jan Becker
Todd Woodbridge
Tokio
Toky uhlíku
Tomáš Hoskovec
Tomáš Koutný
Tony Esposito (lední hokejista)
Toronto
Tramvaj
Tropická cyklóna
Tropické cyklóny a změna klimatu
Tropický pás
Troposféra
Tung Čchi-čchang
Tuvalu
Tyrolské hrabství
Užhorod
Udržitelná doprava
Udržitelná energie
Uherské Hradiště
Uherské království
Uhersko
Uhlí
Uhlíková neutralita
Uhlíkový rozpočet
Ukončování využívání fosilních paliv
UNESCO
Univerzitní systém dokumentace
Urban VIII.
Václav Fiala (ilustrátor)
Václav Havel
Václav Kotrba
Václav Vojtěch Červenka z Věžňova
Válka
Válka o Falklandy
Válka o polské následnictví
Válka ve Vietnamu
Vídeň
Vídeňská operace
Vídeňský les
Vídeňský mír
Východní Asie
Východní blok
Východní Evropa
Východní Germáni
Vědecký konsenzus o změně klimatu
Věra Beranová
Větrná energie
Vakcína proti covidu-19
Varšavská smlouva
Varšavské povstání
Variabilita klimatu
Veřejná doprava
Vegetace
Velké okresní město
Velký bariérový útes
Vesmír
Viktor Hájek
Vilém Aetheling
Vilém Kropp
Vincenzo Legrenzio Ciampi
Virtual International Authority File
Vital Šyšov
Vitus Bering
Vladimír Černík
Vladimír Šlechta
Vladimír Špidla
Vladimír I.
Vladimír Novák (voják)
Vladimír Vavřínek
Vladislav II. Jagello
Vladislav II. Jagellonský
Vladislav IV. Vasa
Vlastimil Letošník
Vlhkost vzduchu
Vliv globálního oteplování na člověka
Vlna veder
Vodní energie
Vodní pára
Vojtěch Kryšpín (pedagog)
Volkspolizei
Vrchlabí
Vymírání
Vypařování
Vytápění
Vzestup hladiny oceánů
Walter Ulbricht
Wieselburg
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2021
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2021
Wikipedie:Ověřitelnost
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/srpen
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2021
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
William Holman Hunt
Willi Stoph
Woodrow Wilson
WorldCat
Yucatánský poloostrov
Září
Západní Antarktida
Západní Berlín
Západní blok
Západní Německo
Západní Slované
Zatmění Slunce
Zdeněk Novák (generál)
Zeměbrana
Zemědělství
Země Koruny české
Zemní plyn
Zemský okres Zhořelec
Zgorzelec
Zmírňování změny klimatu
Znečištění ovzduší
Znečištění vody
Znojmo
Zpětná vazba
Zpětné vazby klimatických změn
Zpravodajská služba




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk