List of nuclides - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

List of nuclides
 ...

This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This represents isotopes of the first 105 elements, except for elements 87 (francium), 102 (nobelium) and 104 (rutherfordium). At least 3,300 nuclides have been experimentally characterized[1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour).

A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode.

Introduction

There are 251 known so-called stable nuclides. Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but no radioactive decay has yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 are determined to be very long-lived radioactive nuclides in the future. In this article, the "stable" nuclides are divided into three tables, one for nuclides that are theoretically stable (meaning no decay mode is possible) and nuclides that can theoretically undergo spontaneous fission but have not been evaluated to check for evidence of this happening, one for nuclides that can theoretically undergo forms of decay other than spontaneous fission but have not been evaluated, and finally a table of nuclides that can theoretically decay and have been evaluated but without detecting any decay. In this latter table, where a decay has been predicted theoretically but never observed experimentally (either directly or through finding an excess of the daughter), the theoretical decay mode is given in parentheses and have "> number" in the half-life column to show the lower limit for the half-life based on experimental observation. Such nuclides are considered to be "stable" until a decay has been observed in some fashion. For example, tellurium-123 was reported to be radioactive, but the same experimental group later retracted this report, and it presently remains observationally stable.

The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified (tellurium-128, barium-130). There are (currently) 35 of these (see these nuclides), of which 25 have half-lives longer than 1013 years. With most of these 25, decay is difficult to observe and for most purposes they can be regarded as effectively stable. Bismuth-209 is notable as it is the only naturally occurring isotope of an element which was long considered stable. A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between 7.0×108 and 4.83×1011 years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about 4.6×109 years ago, but still exist on Earth in significant quantities. They are the primary source of radiogenic heating and radioactive decay products. Together, there are a total of 286 primordial nuclides.[a]

The list then covers the ~700 radionuclides with half-lives longer than 1 hour, split into two tables, half-lives greater than one day and less than one day.

Over 60 nuclides that have half-lives too short to be primordial can be detected in nature as a result of later production by natural processes, mostly in trace amounts. These include ~44 radionuclides occurring in the decay chains of primordial uranium and thorium (radiogenic nuclides), such as radon-222. Others are the products of interactions with energetic cosmic-rays (e.g. cosmic ray spallation) (cosmogenic nuclides), such as carbon-14. This gives a total of about 350 naturally occurring nuclides. Other nuclides may be occasionally produced naturally by rare cosmogenic interactions or as a result of other natural nuclear reactions (nucleogenic nuclides), but are difficult to detect.

Further shorter-lived nuclides have been detected in the spectra of stars, such as isotopes of technetium, promethium, and some actinides. The remaining nuclides are known solely from artificial nuclear transmutation. Some, such as caesium-137, are found in the environment but as a result of contamination from releases of man-made nuclear fission product (from nuclear weapons, nuclear reactors, and other processes). Other are produced artificially for industrial or medical purposes.

List legend

Each group of radionuclides, starting with the longest-lived primordial radionuclides, is sorted by decreasing half-life, but the tables are sortable by other columns.

no (number) column
A running positive integer for reference. This number, i.e. position in this table, might be changed in the future, especially for nuclides with short half-lives.
nuclide column
Nuclide identifiers are given by their atomic mass number A and the symbol for the corresponding chemical element (corresponding to the unique proton number). In the cases that this is not the ground state, this is indicated by a m for metastable appended to the mass number. Sorting here sorts by mass number.
Z, N column
The number of protons (Z column) and number of neutrons (N column).
energy column
The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV, formally: mnmnuclide / A, where A = Z + N is the mass number. Note that this means that a higher "energy" value actually means that the nuclide has a lower energy. The mass of the nuclide (in daltons) is A (mnE / k) where E is the energy, mn is 1.008664916 Da and k = 931.49410242 the conversion factor between MeV and daltons.
half-life column
The main column shows times in seconds (31,556,926 seconds = 1 tropical year); a second column showing half-life in more usual units (year, day) is also provided.
Entries starting with a ">" indicates that no decay has ever been observed, with null experiments establishing lower limits for the half-life. Such elements are considered stable unless a decay can be observed (establishing an actual estimate for the half-life). Note half-lives may be imprecise estimates and can be subject to significant revision.
decay mode column
α α decay
β β decay
ββ double β decay
ε electron capture
β+ β+ decay
β+β+ double β+ decay
SF spontaneous fission
IT isomeric transition
Decay modes in parentheses are still not observed through experiment but are, by their energy, predicted to occur. Numbers in brackets indicate probability of that decay mode occurring in %, tr indicate <0.1%. Spontaneous fission is not shown as a theoretical decay mode for stable nuclides where other modes are possible (see these nuclides).
decay energy column
Multiple values for (maximal) decay energy are mapped to decay modes in their order. The decay energy listed is for the specific nuclide only, not for the whole decay chain. It includes the energy lost to neutrinos.
notes column
CG
Cosmogenic nuclide;
DP
Naturally occurring decay product (of thorium-232, uranium-238, and uranium-235);
ESS
Present in the early Solar System (first few million years), but extinct now as a primordial nuclide.
FP
Nuclear fission product (only those from uranium-235 or plutonium-239) (only those with a half-life over one day are shown);
IM
Industry or medically used radionuclide.[2]

Full list

Theoretically stable nuclides

These are the theoretically stable nuclides, ordered by "energy".

Zdroj:https://en.wikipedia.org?pojem=List_of_nuclides
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk


No. Nuclide A Z N Energy
(MeV)
1 56Fe 56 26 30 9.153567
2 62Ni 62 28 34 9.147877
3 60Ni 60 28 32 9.145862
4 58Fe 58 26 32 9.142938
5 52Cr 52 24 28 9.137037
6 57Fe 57 26 31 9.127119
7 59Co 59 27 32 9.126046
8 54Cr 54 24 30 9.125633
9 61Ni 61 28 33 9.124129
10 55Mn 55 25 30 9.120611
11 64Ni 64 28 36 9.119754
12 66Zn 66 30 36 9.115258
13 53Cr 53 24 29 9.114435
14 63Cu 63 29 34 9.112272
15 65Cu 65 29 36 9.106154
16 68Zn 68 30 38 9.100845
17 50Ti 50 22 28 9.099861
18 51V 51 23 28 9.094884
19 67Zn 67 30 37 9.084468
20 48Ti 48 22 26 9.081488
21 72Ge 72 32 40 9.079465
22 70Ge 70 32 38 9.079372
23 69Ga 69 31 38 9.076078
24 88Sr 88 38 50 9.070438
25 74Ge 74 32 42 9.063522
26 49Ti 49 22 27 9.062323
27 76Se 76 34 42 9.061485
28 71Ga 71 31 40 9.059218
29 78Se 78 34 44 9.058842
30 90Zr 90 40 50 9.057631
31 89Y 89 39 50 9.056743
32 86Sr 86 38 48 9.054160
33 82Kr 82 36 46 9.054126
34 84Kr 84 36 48 9.052649
35 73Ge 73 32 41 9.048006
36 87Sr 87 38 49 9.046964
37 75As 75 33 42 9.045093
38 80Kr 80 36 44 9.044984
39 77Se 77 34 43 9.040153
40 85Rb 85 37 48 9.037998
41 91Zr 91 40 51 9.037156
42 83Kr 83 36 47 9.034966
43 79Br 79 35 44 9.034220
44 81Br 81 35 46 9.033979
45 92Zr 92 40 52 9.032783
46 46Ti 46 22 24 9.030532
47 47Ti 47 22 25 9.027336
48 44Ca 44 20 24 9.013793
49 94Mo 94 42 52 9.011856
50 93Nb 93 41 52 9.009051
51 96Mo 96 42 54 8.996229
52 95Mo 95 42 53 8.994564
53 42Ca 42 20 22 8.989116
54 38Ar 38 18 20 8.984870
55 45Sc 45 21 24 8.983945
56 97Mo 97 42 55 8.973806
57 98Ru 98 44 54 8.971572
58 43Ca 43 20 23 8.964551
59 100Ru 100 44 56 8.963517
60 99Ru 99 44 55 8.956348
61 34S 34 16 18 8.951675
62 40Ar 40 18 22 8.947325
63 102Ru 102 44 58 8.944837
64 101Ru 101 44 57 8.942117
65 41K 41 19 22 8.938623
66 39K 39 19 20 8.938174
67 104Pd 104 46 58 8.930847
68 37Cl 37 17 20 8.929760
69 103Rh 103 45 58 8.925910
70 36S 36 16 20 8.923108
71 106Pd 106 46 60 8.919460
72 105Pd 105 46 59 8.913356
73 35Cl 35 17 18 8.900285
74 108Pd 108 46 62 8.900253
75 107Ag 107 47 60 8.897514
76