Kvantová mechanika - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Kvantová mechanika
 ...
Obrázek udává hustoty pravděpodobnosti odpovídající vlnové funkci elektronu v atomu vodíku s konečnou energií (dolů se zvyšuje: n = 1, 2, 3, ...) a moment hybnosti (rovně se zvyšuje: s, p, d, ...). Světlejší oblasti odpovídají vyšší hustotě pravděpodobnosti pro měřené polohy. Vlnové funkce jako tyto jsou srovnatelné se zvukovým chvěním v klasické fyzice. Moment hybnostienergie jsou kvantované, a proto jsou diskrétní. Proto je obraz stejný jako pro rezonanční frekvence v akustice.

Kvantová mechanika je vedle kvantové teorie pole součástí kvantové teorie, což je základní fyzikální teorie, která zobecnila a rozšířila klasickou mechaniku, zejména na atomové a subatomové úrovni. Od klasické mechaniky se odlišuje především popisem stavu fyzikálních objektů. Stav mikročástic v kvantové mechanice není popsán jejich polohou a hybností, jak je tomu v klasické mechanice, ale vlnovou funkcí, obdobně jako je postupná elektromagnetická vlna popsána harmonickou funkcí. Při přesně definovaných vnějších podmínkách pak lze pomocí kvantové mechaniky vypočítat pomocí Schrödingerovy rovnice vlnovou funkci v libovolném časovém okamžiku.

Vlnová rovnice popisuje de Broglieovu vlnu částice a čtverec absolutní hodnoty vlnové funkce udává hustotu pravděpodobnosti výskytu mikročástice. Jednodušeji lze toto říci, že se daná částice nachází v čase t na místě udaném souřadnicemi x, y, z s určitou pravděpodobností.

Hlavním rysem interpretace kvantové mechaniky je pravděpodobnostní popis.[1][2][3][4][5] Dalším typickým rysem je tzv. kvantování, diskrétnost a nespojitost některých veličin, které v klasické mechanice bývají spojité. Rysem kvantové mechaniky je taktéž výskyt veličin a jevů, které nemají na úrovni klasické mechaniky přímou analogii: např. spin částic, provázanost (zapletení) stavů, relace neurčitosti, atp. (ale tyto analogie mohou mít).[6]

Klasická mechanika se dá získat z kvantové limitním přechodem, kdy lze považovat za dostatečně malé elementární kvantum akce, tzv. Planckovu konstantu. To je podobné např. limitnímu přechodu od relativistické mechaniky ke klasické, který odpovídá limitě pro rychlosti malé vzhledem k rychlosti světla. Naproti tomu je zapotřebí zdůraznit, že kvantový popis není nikterak omezen jen na oblast mikroskopických systémů. Existuje i řada makroskopických systémů, kde se projevují kvantové rysy – např. makroskopická supravodivost, supratekutost, atp. Kvantově-mechanický popis lze uplatnit dokonce i pro jevy v astronomickém měřítku.

Kvantová mechanika se obvykle zabývá soustavami obsahujícími konečný počet bodových částic s nenulovou klidovou hmotností. Společně s teorií relativity je považována za pilíř moderní fyziky, přestože spolu v některých situacích netvoří konzistentní celek. Zatímco teorie relativity, ať již speciální, či obecná, nachází uplatnění zejména pro velké rychlosti, rozměry a hmotnosti, kvantová mechanika se nejčastěji projeví u malých (subatomárních) rozměrů, což jsou například elektrony, neutrony, atomy, molekuly, fotony atd. Speciální teorie relativity má ovšem zásadní význam i pro kvantovou mechaniku – např. v Diracově modelu atomu vodíku a standardním modelu fyziky elementárních částic. Na rozdíl od kvantové teorie pole zůstává v rámci kvantové mechaniky typ a počet částic fixován. Kvantová mechanika tvoří výchozí teoretický rámec v mnoha dalších oblastech fyziky a chemie, např. v teorii pevných látek či v kvantové chemii.

Vznik a vývoj kvantové mechaniky

Vznik a vývoj kvantové mechaniky lze rozdělit do tří období, a to předkvantové éry, období staré kvantové mechaniky (též první kvantová éra) a období moderní kvantové mechaniky (druhá kvantová éra).

Předkvantová éra (do 1900)

Předkvantovou érou (též nultou kvantovou érou) se rozumí období do roku 1900, v němž byly položeny teoretické otázky a experimentálně objeveny jevy, které se nepodařilo vysvětlit v rámci tehdejší klasické fyziky a jejich uspokojivé vysvětlení bylo podáno až v rámci staré nebo moderní kvantové mechaniky, tedy v první nebo druhé kvantové éře. Příkladem tehdy nevysvětlených jevů jsou: záření černého tělesa popsaný Gustavem Kirchhoffem v roce 1860 a objev fotoelektrického jevu Heinrichem Hertzem v roce 1887.

Stará kvantová mechanika (1900 až 1925)

Max Planck

Obdobím staré kvantové mechaniky (též první kvantová éra) se nazývá období v letech 1900 až 1925, v němž byly kvantové jevy vysvětlovány v rámci klasické fyziky, do níž byly přidávány dodatečné principy. Stará kvantová mechanika tedy neměla vlastní matematický aparát a byla součástí klasické fyziky.

Kvantová mechanika dostala jméno podle myšlenky naznačené Maxem Planckem v roce 1900, podle níž energie elektromagnetického záření je přenášena po nepatrných, ale konečně velkých, kvantech (z latinského „quantum“, kolik) , kde je Planckova konstanta a je frekvence záření. Díky této kvantové hypotéze se Planckovi podařilo beze zbytku vysvětlit záření černého tělesa odvozením Planckova vyzařovacího zákona[7], za který dostal v roce 1918 Nobelovu cenu za fyziku[8]. Planck je za tento první výsledek kvantové fyziky považován za zakladatele kvantové mechaniky.

V roce 1905 použil kvantovou hypotézu Albert Einstein a vysvětlil fotoelektrický jev[9], za což mu byla udělena Nobelova cena za rok 1921. Dalším důležitým krokem pro další vývoj kvantové teorie byl Bohrův model atomu z roku 1913[10], který vysvětloval rozložení spektrálních čar vodíku pomocí předpokladu, že moment hybnosti elektronu nemůže nabývat libovolných hodnot, ale je vždy celistvým násobkem Planckovy konstanty. Mezi další základní myšlenky staré kvantové mechaniky patřila de Broglieho hypotéza (též korpuskulárně-vlnový dualismus 1923[11]), uvažující u veškeré látky dvojí podstatu, vlnovou a částicovou. Tato hypotéza pomáhala interpretaci interferenčních jevů při rozptylu částic, v té době především elektronů (např. Youngův experiment prováděný s různými typy částic).

V počátku dvacátých let 20. století bylo již zřejmé, že do té doby nesystematicky a do značné míry libovolně aplikovaná pravidla kvantování, přidávaná ke klasické mechanice pro vysvětlení některých mikroskopických jevů, budou vyžadovat vytvoření nové konzistentní fyzikální teorie, značně odlišné od dosavadní fyziky. Tou se později stala moderní kvantová mechanika.

Moderní kvantová mechanika (od 1925)

Obdobím moderní kvantové mechaniky (též druhá kvantová éra) se nazývá období od roku 1925 do současnosti. V tomto období má kvantová mechanika vlastní matematický aparát odlišný od klasické fyziky. Klasická fyzika se podle principu korespondence považuje za limitní případ kvantové mechaniky.

První kvantovou mechanikou v moderním slova smyslu byla Heisenbergova maticová kvantová mechanika z roku 1925, která umožnila zobecnit v klasické mechanice používané Hamiltonovy rovnice tak, aby byly použitelné pro novou teorii. V této nové teorii Heisenberg popisoval systém stavovým vektorem a měřitelné veličiny nekonečně-rozměrnými maticemi[12].

O necelý rok později, v roce 1926, publikoval Erwin Schrödinger, vlnovou kvantovou mechaniku, kde systém popsal komplexní vlnovou funkcí a měřitelné veličiny lineárními operátory.[13]. Součástí vlnové kvantové mechaniky uveřejnil Schrödinger i vlnovou rovnici, Schrödingerovu rovnici, umožňující popsat vývoj vlnové funkce v čase.

Schrödinger brzy rozpoznal, že jeho vlnová kvantová mechanika je ekvivalentní Heisenbergově maticové kvantové mechanice (vlnová funkce odpovídá stavovému vektoru, lineární operátory odpovídají nekonečně-rozměrným maticím, atd.) a že obě teorie předpovídají stejné výsledky.[14] V dnešní době se pro výpočty z praktických důvodů používá častěji vlnová kvantová mechanika, protože výpočty s nekonečně rozměrnými maticemi zpravidla nejsou triviální. Terminologie obou formulací kvantové mechaniky se používá dodnes.

Kvantová mechanika se pak velmi rychle stala akceptovanou díky vynikající shodě předpovědí s experimentálně získanými daty, ovšem v oblasti interpretace zůstávala spornou (viz níže).

Hlavní rozdíly mezi klasickou a kvantovou mechanikou

Tunelový jev - vlnová funkce elektronu částečně protuneluje bariérou, takže je nenulová pravděpodobnost naměření elektronu za bariérou.
  1. Pravděpodobnostní popis – Jednotlivým stavům kvantového systému jsou přiřazeny určité hodnoty hustoty pravděpodobnosti. Výsledky měření dané veličiny ve známém stavu lze předpovědět jen ve smyslu pravděpodobnostním. Hustota pravděpodobnosti ovšem existuje i klasicky.[15]
  2. Princip superpozice stavů – Kvantový objekt může existovat ve stavu, který je dán lineární kombinací jiných stavů. Princip superpozice existuje také klasicky.
  3. Diskrétní spektrum – Některé veličiny v určitých situacích (např. energie či moment hybnosti elektronu v obalu atomu) nemohou nabývat libovolných hodnot, ale jen hodnot z diskrétní množiny; odtud název „kvantová mechanika“. Spektrum složené například ze zdrojů monochromatického záření nebo tónů je také diskrétní.
  4. Měření – Zatímco měření v klasické mechanice neovlivňuje měřený objekt, v kvantové mechanice operace měření na objektu vede ke změně stavu tohoto objektu, což odpovídá redukci vlnové funkce (rozložení pravděpodobnosti), populárně nazývanému kolaps vlnové funkce; z toho vyplývá možná závislost výsledku dvou měření na pořadí jejich provedení. Klasické měření také ovlivňuje měřené (například princip reciprocity).
  5. Tunelový jev – Částice mohou s určitou pravděpodobností pronikat i do oblasti, která je podle klasické mechaniky částicím nepřístupná, např. skrze překážku, na jejíž překonání nemají dostatek energie. Částice se také může s určitou pravděpodobností odrazit od překážky, kterou by měla v klasické mechanice s jistotou překonat. Klasická evanescentní vlna také disponuje touto možností.
  6. Vlnově-částicový dualismus – Kvantové objekty se v některých situacích mohou chovat (být interpretovány) jako vlny (mají dobře lokalizovanou velikost hybnosti), v jiných jako částice (mají dobře lokalizovanou polohu). Dualitu lze demonstrovat i klasicky.[16]
  7. Relace neurčitosti – Určité veličiny nejsou na jednom systému současně přesně měřitelné, např. poloha a hybnost. Klasická Fourierova transformace má také takové vlastnosti.
  8. Princip nerozlišitelnosti částic – Částice stejného druhu (např. dva elektrony) nemůžeme od sebe ani v principu odlišit, nelze je „očíslovat“. Rozlišitelnost či nerozlišitelnost různých stavů systému se v rovnicích kvantové fyziky velmi konkrétně projevuje, například při popisu chemické vazby. Klasická statistická fyzika také používá statistické soubory s identickými částicemi.
  9. Kvantová provázanost (propletení, entanglement) – Stav systému dvou či více částic, v němž nelze hovořit odděleně o stavech jednotlivých částic. Jeho chování je však podobné jako pro klasický chaos.[17]

Klíčové experimenty a jevy kvantové mechaniky

Interferenční obrazec vzniklý průchodem elektronů dvojštěrbinou.

Podivnosti, záhady a filosofické problémy kolem kvantové mechaniky

Niels Bohr s Albertem Einsteinem v domě Paula Ehrenfesta v Leidenu (prosinec 1925)

Kvantovou mechaniku nezřídka doprovázejí různá tvrzení o podivuhodných záhadách kvantových systémů. Bývají však téměř bez výjimky způsobena již chybnými představami o podstatě teorie pravděpodobnosti.[22][23]

Od počátku výzkumu kvantových jevů se často vyskytovaly výsledky, které odporovaly intuici (selskému rozumu). Vyprovokovaly mnoho filozofických debat a nejroztodivnějších výkladů vědeckých výsledků. Dokonce i základní poučky jako například Bornovo základní pravidlo vztahující se k amplitudě pravděpodobnosti a rozdělení pravděpodobnosti, nebyly celá desetiletí všeobecně přijaty ani vědeckou obcí, natož veřejností.

Ale i podle současných poznatků Bornovo pravidlo a princip superpozice stavů také vykazují nutnost revize.[24]

Kodaňský výklad je, především díky teoretickému fyziku Nielsi Bohrovi, výkladem kvantové mechaniky, který je nejvíce rozšířen mezi fyziky. Podle tohoto výkladu nemůže být pravděpodobnostní povaha kvantově mechanických předpovědí vysvětlena v rámci nějaké další deterministické teorie, a složitě odráží naše omezené znalosti. Kvantová mechanika poskytuje pravděpodobnostní výsledky, protože vesmír je sám pravděpodobnostní spíše než deterministický.

Oponenti kvantové mechaniky

Se stavem, v jakém byla kvantová mechanika, nebyli spokojeni nejen ostatní fyzikální odborná veřejnost, ale také osobnosti, které se na kvantové mechanice přímo samy podílely. Nejznámějším oponentem moderní kvantové mechaniky byl jeden ze spoluautorů staré kvantové mechaniky, Albert Einstein. Einstein je v souvislosti s oponenturou kvantové mechaniky znám především jako autor citátu: „Bůh nehraje v kostky“, kterým vyjádřil svůj postoj k pravděpodobnostnímu charakteru kvantové mechaniky. Dále je Einstein znám jako spoluautor jednoho z nejcitovanějších fyzikálních článků vůbec[25], EPR článku, který souvisí s kvantovou provázaností (entanglementem) částic.[26] To, že byl Einstein přesvědčen, že kvantová mechanika je neúplnou teorií, nemění nic na faktu, že se v dlouhých diskusích s Bohrem v letech 1925–1935 zasloužil o upevnění (Kodaňské interpretace) kvantové mechaniky, byť byl jejím odpůrcem. Bohr o jeho zásluhách řekl: „Měl jsem tu čest diskutovat s Einsteinem epistemologické problémy, které vyvolal moderní vývoj atomové fyziky… a ačkoliv nebylo dosud dosaženo úplné shody, jsou pro mne tyto diskuse neocenitelné a podnětné.“[27]

Mezi další známé osobnosti, které nebyly spokojeny se stavem kvantové mechaniky, patřil Erwin Schrödinger. Ten jednou v rozhovoru s Bohrem prohlásil: „Jestli se musí dál pokračovat s těmito zatracenými kvantovými skoky, pak lituji, že jsem kdy začal pracovat na atomové teorii.“ Načež Bohr odvětil: „Ale my ostatní jsme Vám velmi vděčni, že jste tím posunul atomovou fyziku o rozhodující krok vpřed.“[28]

Formalismus kvantové mechaniky

Postuláty kvantové mechaniky

Kvantovou mechaniku lze založit například na následující sadě postulátů[29][30]:

  1. Postulát o stavovém vektoru (vlnové funkci) – Stav systému v čase je popsán stavovým vektorem z Hilbertova prostoru všech stavových vektorů, přičemž libovolný komplexní nenulový násobek tohoto vektoru popisuje stejný stav.
  2. Postulát o operátorech – Každá měřitelná fyzikální veličina je popsatelná lineárním hermiteovským operátorem , který působí na stavový vektor .
  3. Postulát o kvantování – Jediné možné naměřitelné hodnoty fyzikální veličiny jsou vlastní čísla operátoru , neboli množina všech naměřitelných hodnot je .
  4. Postulát o redukci stavového vektoru – Pokud měření fyzikální veličiny na systému ve stavu dalo výsledek , pak se stav systému okamžitě změnil na podprostor příslušný danému vlastnímu číslu : kde je projekční operátor příslušející vlastnímu číslu . V případě nedegenerovaného spektra je podprostor příslušející vlastnímu číslu vlastní vektor splňující .
  5. Postulát o Schrödingerově rovnici – Časový vývoj stavového vektoru se řídí časovou Schrödingerovou rovnicí: kde je imaginární jednotka, je Planckova redukovaná konstanta a je Hamiltonián, neboli operátor energie.
  6. Postulát o kvantovacích pravidlech – Je-li pro souřadnice polohy popsatelná pozorovatelnou a složka hybnosti popsatelná pozorovatelnou , pak pozorovatelnou , jež popisuje klasicky definovanou fyzikální veličinu , lze získat vhodnou symetrizací výrazu






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk