Kryštalografia - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Kryštalografia
Braggov zákon difrakcie v kryštáli

Kryštalografia (z gr. crystallon – zmrznuté kvapky, ľad + graphein – písať) je veda o morfologických a fyzikálnych vlastnostiach kryštálov (presnejšie o vnútornom usporiadaní atómov, iónov a molekúl v tuhých telesách). Pravidelné kryštály pútali pozornosť už v staroveku, kde boli objektami rôznych povier – napr. ametystu bola prisudzovaná schopnosť chrániť pred opitosťou.

História

Pravdepodobne prvý kryštalografický zákon formuloval dánsky zberateľ minerálov Nicolaus Stenonus (Stenon). Stenon formuloval zákon o stálosti uhlov, podľa ktorého ekvivalentné plochy zvierajú rovnaký uhol. zákon sformuloval na základe merania rezov kremeňa kolmých k osi dipyramídy. Ak je kryštál dokonalé vyvinutý tak daným rezom je pravidelný šesťuholník. Ak nie je dokonale vyvinutý ide o nepravidelný šesťuholník ale ekvivalentné hrany zvierajú stále rovnaký uhol.

René Just Haüy.

Škola, seriózne študujúca kryštály sa sformovala vo Francúzsku na prelome 18. a 19. storočia. Jej hlavným protagonistom bol abbé Haüy. Jeho teória o trojrozmerne periodickej vnútornej stavbe kryštálov sa neskôr stala základným postulátom kryštalografie. Formuloval zákon o racionalite parametrov podľa ktorého každú kryštálovú plochu možno odvodiť zo základného tvaru násobením základných parametrov racionálnym číslom.

Haüyove myšlienky rozvinul August Bravais (chemik, fyzik a banský inžinier), ktorý ich posunul do novej dimenzie: ak bol totiž objav abbého Haüya pravdivý, tak by sa z teoreticky nekonečnej periodickej kryštálovej štruktúry dal vybrať motív, ktorý ju reprezentuje a ktorého opakovaním možno danú štruktúru celú vybudovať. Tento motív nazval základná bunka. Bunku možno definovať podľa metriky a súmernosti, čo Bravais zohľadnil a odvodil 14 typov priestorových mriežok. Je si treba uvedomiť, že ako abbé Haüy tak aj August Bravais pôsobili predtým ako boli publikované prvé predstavy o atómovej stavbe hmoty, preto netreba dávať ich objavy do týchto súvislostí.

Prvé goniometre, umožňujúce presné meranie geometrických vzťahov medzi jednotlivými kryštálovými plochami sa objavili v 18. storočí. Kryštály ako geometrické objekty inšpirovali Angličana Williama Millera k zavedeniu symboliky vypracovanej Bernhardim a Williamom Whewellom, kde postavenie kryštálových plôch voči súradnicovému systému je označené symbolmi (Millerove symboly pomenované sú, aj keď v podstate nesprávne, po Millerovi).

Súmernosťou trojrozmerného priestoru sa nezávisle od seba zaoberali viacerí mineralógovia, prípadne matematici. Spolu odvodili 230 kombinácií prvkov súmernosti, ktoré tvoria 230 priestorových grúp. Vzhľadom na veľkú symetriu v kubickej sústave je definovaných 136 grúp a v triklinickej je možno definovať iba dve grupy.

Do roku 1912 sa výskum zameriaval na štúdium morfológie kryštálov a ich chemického zloženia. V roku 1912 nemecký docent Max von Laue objavil, že röntgenové lúče prechádzajúce cez kryštál modrej skalice interferujú, čoho dôkazom je fotografická platňa umiestnená za prístrojom. Na Laueho práce nadviazali otec a syn Braggovci, ktorí vyriešili prvú kryštálovú štruktúru – štruktúru NaCl.

Mriežka a kryštálová štruktúra

Ak každému uzlu niektorej základnej priestorovej mriežky priradíme určitý "ornament" (nazývaný báza ale aj motív a pod.) t. j. skupinu atómov (či iónov), dostaneme kryštálovú štruktúrnu mriežku – štruktúru (obr. 2). Keďže existuje nekonečne množstvo ornamentov, ktoré možno uzlom priestorovej mriežky priradiť, existuje nekonečne veľa kryštálových štruktúr. Tieto pojmy sa bohužiaľ často zamieňajú. Mriežka je matematický pojem a neznamená kryštál. Body ktoré sa kreslia z dôvodu názornosti do uzlov mriežky nie sú atómy.

Obr. 2 Odvodenie plošnej kryštálovej štruktúry.

Príklad definovania štruktúry kryštálu: Ku každému uzlu kubickej plošne centrovanej priestorovej mriežky priradíme bázu C 0,0,0 + C 1/4, 1/4,1/4 (báza vyjadruje relatívnu polohu atómu vzhľadom na uzol mriežky, pričom jednotková vzdialenosť znamená medziuzlovú vzdialenosť v priestorovej mriežke) a dostaneme štruktúru diamantu. Elementárna bunka diamantu teda obsahuje až 8 atómov uhlíka. Niekedy sa používa skôr terminológia, že ide o dvojnásobnú mriežku kubickú plošne centrovanú vzniknutú príslušnou transláciou. Prostou transláciou sa však nedajú popísať viac prvkové štruktúry napr. sfalerit, čo je štruktúra podobná diamantovej ale tetragonálne atómy sú atómy síry a ostatné sú atómy zinku.

Veľmi často je tiež nesprávne pochopené zadelenie 14 základných typov mriežok na primitívne a centrované. Primitívne priestorové mriežky sú také, ktoré majú uzly iba v rohoch mriežky. Teda priemerný počet uzlov na mriežku je 1. Napr. primitívna kubická priestorová mriežka má 8 uzlov, ale každý je v nekonečnom priestore spoločný pre 8 buniek. Centrované sú také, ktoré majú uzly aj mimo týchto rohových miest. Napr. priestorovo (telesne) centrovaná kubická mriežka má navyše jeden uzol v geometrickom strede kocky. To však neznamená, že by sa takáto priestorová štruktúra nedala opísať aj pomocou inej – primitívnej mriežky. 14 základných mriežok, tak ako sa používajú teraz bolo vybraných konvenciou. Mohli sa pokojne vybrať aj iným spôsobom, ale stále by reprezentovali tých istých 14 možných priestorových štruktúr. Ako príklad možno uviesť voľbu primitívnej bunky k plošne centrovanej kubickej bunke.

Voľba centrovaných mriežok za základné teda zjednodušila popis priestorových štruktúr, na druhej strane však zdanlivou jednoduchosťou je zavádzajúca. Zjednodušenie spočíva v zavedení tzv. kryštalografických sústav, ktorých je sedem. V rámci jednej sústavy sa potom zavádza centrovanie (ak má zmysel v danej sústave).

Mriežka CsCl ma v rohoch kocky atómy Cs a v strede Cl (alebo naopak – je to to isté). Táto mriežka, ak si namiesto atómov predstavíme prázdne uzly priestorovej mriežky, je vlastne priestorovo (telesne) centrovaná kubická mriežka. Kryštalografická mriežka CsCl sa VŠAK NEDÁ popísať priradením bázy k telesne centrovanej priestorovej mriežke. Neexistuje totiž kombinácia atómov, ktorú ak priradíme takejto priestorovej mriežke, taká že výsledok je mriežka CsCl. Štruktúra CsCl sa dá definovať iba tak, že každému bodu primitívnej kubickej mriežky priradíme bázu (Cs 0,0,0 + Cl 1/2,1/2,1/2).

Podobne vyzerajúca mriežka Fe (feritu – nízkoteplotnej modifikácie železa) sa dá popísať dvojako: tak že každému bodu telesne centrovanej kubickej priestorovej mriežky priradíme ornament (Fe 0,0,0), alebo tak že každému bodu primitívnej priestorovej kubickej mriežky priradíme ornament (Fe 0,0,0 + Fe 1/2,1/2,1/2). V literatúre je nejednoznačnosť v tom či musí byť báza vytiahnutá na primitívnu mriežku alebo nie.

Problém pri jednoduchých kryštalografických mriežkach, aké sa používajú v metalurgii, je v tom, že sa zaužívalo pomenovanie štruktúrnych buniek odpovedajúcemu tvaru priestorovej bunky. Napr. mriežka feritu sa označuje ako FCC (kubická plošne centrovaná). V tomto kontexte je tento pojem naozaj pomenovaním kryštálovej štruktúry a nie iba priestorovej mriežky (ako matematického pojmu). Môže to však viesť k nedorozumeniam pri niektorých mriežkach. Napr. hore popísaný problém CsCl. Štruktúrnu mriežku CsCl nie je správne označovať za priestorovo centrovanú štruktúrnu mriežku (aj keď sa nájdu také tvrdenia aj v mineralogických skriptách). V kryštalografii existuje nemecký spôsob označovaný aj v angličtine „Strukturbericht“, kde sa jednoprvkové štruktúry označujú písmenom A, dvojprvkové štruktúry typu AB sa označujú písmenom B, látky typu AB2 sa označujú C atď. Za písmenom nasleduje číslo typu. Napr. CsCl je kryštalografická mriežka B2. Obdobne zaplnená mriežka ale atómami jedného druhu (napr. ferit) sa označuje A2. Mriežka typu diamantovej sa označuje A4 atď. Existuje rozsiahly systém štruktúrnych buniek a ich značenia týmto spôsobom. Strukturbericht system. Ďalším systémom značenia štruktúrnych mriežok je Pearsonov systém značenia kryštalografických štruktúr, kde sa napríklad mriežka typu CsCl označuje ako cP2 c – cubic, P – primitive, 2 – počet atómov na bunku. Z tohto systému je explicitne vidieť, že mriežku CsCl nemožno pokladať za priestorovo centrovanú.

Keďže niektoré štruktúry ako napr. ferit je možno definovať viacerými spôsobmi (rôzne kombinácie mriežky a bázy), otázky typu ktorú zo 14 mriežok má (alebo v ktorej kryštalizuje) diamant je nesprávna. Diamant možno popísať tak ako je to uvedené vyššie teda, že každému uzlu priestorovej mriežky kubickej plošne centrovanej priradíme dva atómy, ale mohli by sme to urobiť aj tak, že každému bodu primitívnej kubickej priestorovej mriežky priradíme 8 atómov. Výsledok je jedna a tá istá štruktúrna mriežka diamantu (v tomto prípade našťastie existuje zaužívaný pojem diamantová štruktúra). Samozrejme môžu existovať aj štruktúrne mriežky s 10, 20 alebo aj viac atómami na elementárnu štruktúrnu bunku. Počet uzlov (bodov) každej zo 14 základných priestorových buniek je však konštantný.

Metódy

Pred objavom difrakcie sa kryštalografia zameriavala výlučne na štúdium geometrie kryštálov. Pomocou goniometra sa merali uhly, ktoré zvierali jednotlivé hrany kryštálov, tieto sa potom preniesli do stereografickej siete, označili sa symbolmi (Millerove symboly) a zistila sa jeho symetria. V súčasnosti napomáha pri riešení štruktúry tuhých látok elektromagnetické žiarenie, konkrétne röntgenové lúče (ale využíva sa aj Synchrotrónové žiarenie, neutrónová a elektrónová difrakcia), pomocou ktorých sa zisťuje stavba kryštálov.

Prehľad Nobelových cien, udelených za kryštalografické práce

Pozri aj

Externé odkazy

Zdroj:
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Zdroj: Wikipedia.org - čítajte viac o Kryštalografia

29. január
29. marec
30. august
31. december
4. jún
5. jún
6. apríl
6. január
6. marec
6. september
7. február
7. jún
7. marec
8. apríl
8. jún
8. marec
9. máj
Abd al-Fattáh as-Sísí
Academy Awards
Afganistan
Akadémia filmových umení a vied
Amsterdam
Andrej Kiska
ANO 2011
Baškovce (okres Sobrance)
Belgicko
Beluj
Bezpečnostná rada Organizácie Spojených národov
Boeing 777
Bohuslav Sobotka
Brazília
Brisbane
Brusel
Bukovec (okres Košice-okolie)
Cena Švédskej ríšskej banky za ekonomické vedy na pamiatku Alfreda Nobela
Dalia Grybauskasová
Desaťročie
Donald Tusk
Donecká oblasť
Doprava
Eduard Ševardnadze
Egypt
Eric Betzig
Európska komisia
Euromajdan
Eurozóna
Eutanázia
Fidesz – Maďarský občiansky zväz
Filip VI. (Španielsko)
František (pápež)
František Kele
G20
G8
Gabriel García Márquez
Grécko
Gregoriánsky kalendár
Harakovce
Herman Pieter de Boer
Hiroši Amano
Hollywood
Hucín
Isamu Akasaki
Ivan Gašparovič
Iveta Bartošová
Izrael
Ján Pavol II.
Ján XXIII. (pápež)
Jean-Claude Juncker
Jean Tirole
Joe Cocker
Juan Carlos I.
Kajláš Satjárthí
Kalendárny rok
Kalifornia
Kanonizácia (cirkev)
Kardinál
Kométa
Kresťanská a demokratická únia – Československá strana ľudová
Kryštalografia
Krym (polostrov)
Krym (republika)
Kuala Lumpur
Kultúra (spoločenské vedy)
Kyjev
Lackov
Lauren Bacall
Let Malaysia Airlines 17
Let Malaysia Airlines 370
Lipník (okres Prievidza)
Litva
Lotyšsko
Maďarsko
Majstrovstvá sveta vo futbale 2014
Malála Júsufzajová
Malé Dvorníky
Malajzia
May-Britt Moserová
Microsoft Office
Močiar (okres Banská Štiavnica)
Moskva
Neptún
New Horizons
Nobelova cena za fyziku
Nobelova cena za literatúru
Nobelova cena za mier
Ondavka (okres Bardejov)
Opátka (okres Košice-okolie)
Organizácia Spojených národov
Pápež
Palestínske autonómne územia
Patrick Modiano
Pavľany
Pavol VI.
Perihélium
Petro Olexijovyč Porošenko
Petr Hapka
Poniky
Poproč (okres Rimavská Sobota)
Poslanecká snemovňa Parlamentu Českej republiky
Pražské metro
Praha
Prezident Slovenskej republiky
Rím
Rímska číslica
Rašice
Rada Európskej únie
Ramadán
Recep Tayyip Erdoğan
Reuven Rivlin
Richard Attenborough
Robert Fico
Robin Williams
Rosetta (sonda)
Rozvojová krajina
Rumunsko
Ruská federácia
Rusko
Shirley Jane Templová
Simferopol
Slovensko
SMER – sociálna demokracia
Soči
Spojené štáty
Spojené kráľovstvo
Srbsko
Starosta
Stefan Hell
Storočie
Suchodol
Taliansko
Turecko
Ukrajina
Věra Chytilová
Veľká Lúka (okres Zvolen)
Viktor Fedorovyč Janukovyč
Vladimir Putin
Voľba prezidenta Slovenskej republiky v roku 2014
Voľba prezidenta Slovenskej republiky v roku 2014#Kandidáti
Voľby do Európskeho parlamentu na Slovensku v roku 2014
Voľby do orgánov samosprávy obcí na Slovensku v roku 2014
William Moerner
Windows XP
Wojciech Jaruzelski
Zatmenie Slnka
Zem
Zimné olympijské hry 2014
Zoznam nositeľov Nobelovej ceny za chémiu
Zoznam nositeľov Nobelovej ceny za fyziológiu alebo medicínu
Zoznam predstaviteľov štátov v roku 2014




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk