Kometa - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Kometa
 ...
Kometa Hale-Bopp s bílým prachovým a modrým plynovým ohonem (březen 1997)
Další významy jsou uvedeny na stránce Kometa (rozcestník).

Kometa (latinsky cometa, z coma, řecky κόμη, kómé, vlasy), zastarale vlasatice, je malé těleso sluneční soustavy složené především z ledu a prachu a obíhající většinou po velice výstředné (excentrické) eliptické trajektorii kolem Slunce. Komety jsou známé pro své nápadné ohony. Většina komet se po většinu času zdržuje za oběžnou dráhou Pluta, odkud občas nějaká přilétne do vnitřních částí sluneční soustavy. Velmi často jsou popisované jako „špinavé sněhové koule“ a z velké části je tvoří zmrzlý oxid uhličitý, methan a voda smíchaná s prachem a různými nerostnými látkami.

V závislosti na gravitační interakci s planetami se dráha komet může změnit na hyperbolickou (a definitivně opustit sluneční soustavu) nebo na méně výstřednou. Například Jupiter je známý tím, že mění dráhy komet a zachycuje je na krátkých oběžných dráhách. Proto existují i komety, které se ke Slunci vrací pravidelně a často. Mezi ně patří například Halleyova nebo Kohoutkova kometa. Častost návratů komety v tomto smyslu znamená jednou za několik let až staletí.

Komety mohou představovat potenciální hrozbu pro Zemi, v jejíž minulosti mohly způsobit některá hromadná vymírání. Obecně platí, že jsou mnohem nebezpečnější než asteroidy, neboť jejich rychlost může dosahovat až 3,5x vyšších hodnot (až 70 km/s, asteroidy ~20 km/s).[1] Ta se při výpočtu kinetické energie nárazu umocňuje na druhou, díky čemuž má na výslednou energii mnohem větší vliv než hmotnost tělesa.[2]

Halleyova kometa

Složení

  • Jádro – pevná část komety o velikosti v řádu kilometrů až desítek kilometrů.
  • Koma – kulová obálka kolem jádra, složena především z plynů.
  • Ohon – plyn a prachové částice směřující od Slunce (někdy je též označovaný jako chvost nebo ocas).

Jádro se skládá především z vodního ledu, tuhého oxidu uhličitého, oxidu uhelnatého, dalších zmrzlých plynů a prachu. Koma obsahuje různé nedisociované i disociované molekuly, radikály a ionty, např. OH, NH2−, CO, CO2, NH3, CH4, CN, (CN)2 aj.

Všeobecně se předpokládá, že komety vznikají v Oortově mračnu ve velké vzdálenosti od Slunce, spojováním zbytků po kondenzaci sluneční mlhoviny. Okraje takovýchto mlhovin jsou dostatečně chladné na to, aby zde mohla existovat voda v pevném a nikoli plynném skupenství. Planetky vznikají jiným procesem, ale velmi staré komety, které ztratily všechnu svoji těkavou hmotu, se jim mohou podobat.

Snímek komety Tempel 1 pořízený sondou Deep Impact

Fyzikální vlastnosti

Předpokládá se, že komety – přesněji kometární jádra – vznikají ve vzdáleném oblaku známém jako Oortův oblak (pojmenovaném podle holandského astronoma Jana Hendrika Oorta, který jako první vyslovil hypotézu o jeho existenci) ve vzdálenosti kolem 50 000 astronomických jednotek od Slunce. V této vzdálenosti je gravitační působení Slunce již velmi slabé a proto na komety významně působí i jiná vesmírná tělesa – především okolní hvězdy. Pokud se některá z nich přiblíží ke Slunci, pak vymrští množství komet z jejich vzdálených oběžných drah. Některé z nich se potom dostanou na extrémně protáhlou eliptickou oběžnou dráhu, která má perihel (nejbližší bod oběžné dráhy) dostatečně blízko u Slunce.

Když se kometa přiblíží k vnitřní části Sluneční soustavy, zahřívání jejího jádra Sluncem způsobí, že se jeho vnější ledové vrstvy začnou vypařovat. Takto uvolněné proudy prachu a plynu vytvoří extrémně řídkou atmosféru okolo komety, nazývanou koma, a síla, kterou na komu působí sluneční vítr, způsobí vytvoření ohonu mířícího směrem od Slunce. Prach a plyn vytvářejí samostatné ohony, které míří do mírně odlišných směrů, přičemž prach zůstává v místech oběžné dráhy komety (často takto vzniká zakřivený ohon) a ohon z ionizovaného plynu vždy míří přímo od Slunce, protože plyn je silněji ovlivňován slunečním větrem než prach a sleduje čáry magnetického pole, a ne trajektorii oběžné dráhy. Ačkoli pevné těleso komety, takzvané jádro, má průměr menší než 50 km, koma může být větší než Slunce a ohony mohou dosáhnout délky 150 milionů km i více.

Komu i ohon osvětluje Slunce, proto mohou být pozorovatelné ze Země, když kometa prolétá vnitřní částí Sluneční soustavy, prach odráží sluneční světlo přímo a plyny září v důsledku ionizace. Většina komet je bez pomoci dalekohledu příliš slabě viditelná, ale několik jich je dostatečně jasných na to, aby byly viditelné pouhým okem. Před vynálezem dalekohledu se komety zdánlivě z ničeho nic zjevovaly na obloze a postupně mizely z dohledu. Byly považovány za zlé znamení smrti králů a šlechticů, případně blížících se katastrof. Ze starověkých pramenů, například čínských kostí pro předpovídání budoucnosti, je známé, že jejich výskyty byly pozorované lidmi po celá tisíciletí. Jedním z nejznámějších starých záznamů je zobrazení Halleyovy komety na Bayeuxském gobelínu, který zaznamenává normanský tábor při dobytí Anglie roku 1066.

Komety mají značně protáhlé oběžné dráhy; znázorněny jsou i dva samostatné ohony

Optické vlastnosti

Překvapením je, že kometární jádra patří mezi nejčernější známé objekty, o kterých víme, že existují ve Sluneční soustavě. Sonda Giotto zjistila, že jádro Halleyovy komety odráží přibližně 4 % světla, které na něj dopadá. Sonda Deep Space 1 podobně zjistila, že povrch komety Borrelly odráží jen 2,4 % až 3,0 % dopadajícího světla (pro porovnání asfalt odráží 7 % dopadajícího světla). Dříve se astronomové domnívali, že sluneční záření odpařilo ve svrchní vrstvě komety těkavější složky a zůstalo zde více organických sloučenin s delším řetězcem, které bývají tmavší. Analýza jádra komety 73P/Schwassmann-Wachmann, které se rozpadlo na několik částí, však ukázala, že složení svrchních a vnitřních vrstev komety je prakticky totožné.[3]

V roce 1996 se překvapivě zjistilo, že komety vyzařují i rentgenové záření. Záření je pravděpodobně generované interakcí komet se slunečním větrem: když vysokoenergetické ionty vletí do atmosféry komety, srážejí se s kometárními atomy a molekulami. Při takovéto srážce ionty zachytí jeden nebo více elektronů, což vede k emisi rentgenového nebo ultrafialového fotonu.[4]

Oběhové vlastnosti

Oběžné dráhy Kohoutkovy komety a Země znázorňující velkou excentrickou oběžnou dráhu a rychlejší pohyb v blízkosti Slunce

Komety jsou klasifikovány podle svých oběžných dob (period). Krátkoperiodické komety mají oběžné doby kratší než 200 let, zatímco dlouhoperiodické komety mají oběžné doby delší, ale stále zůstávají gravitačně závislé na Slunci. Jednonávratové komety mají parabolické či hyperbolické oběžné dráhy, které je vynesou navždy mimo sluneční soustavu po jediném průletu okolo Slunce. Opačným extrémem je krátkoperiodická Enckeova kometa, která má oběžnou dráhu, která jí nedovolí se vzdálit od Slunce dál než k oběžné dráze planety Jupiter. Za místo vzniku krátkoperiodických komet se obecně považuje Kuiperův pás. Dlouhoperiodické komety zřejmě vznikají v Oortově oblaku. Bylo navrženo množství různých modelů vysvětlujících, proč jsou komety odkloněny do velmi excentrických drah. Patří mezi ně přiblížení k jiným hvězdám na cestě Slunce naší Galaxií, působení hypotetického průvodce Slunce Nemesis a nebo působení zatím neznámých transneptunických těles, například hypotetické Planety X. Nejpřijímanější je hypotéza, že k těmto poruchám drah dochází náhodně, vzájemným ovlivňováním se těles v Oortově mračnu.

Kvůli svým malým hmotnostem a excentrickým oběžným drahám, které je přivádějí do blízkosti velkých planet, jsou oběžné dráhy často rušené (perturbované). Lze si všimnout, že dráhy krátkoperiodických komet mívají často vzdálenosti afelu souměřitelné s velkými poloosami oběžných drah obřích planet. Tyto skupiny pak obvykle nazýváme rodinami příslušné planety. Jupiterova rodina komet má přitom nejvíce členů. Je tedy zřejmé, že oběžné dráhy komet přicházejících z Oortova mračna často ovlivňuje gravitace obřích planet, když se k nim komety přiblíží. Jupiter je největším zdrojem těchto poruch, protože je zdaleka nejhmotnější planetou ve sluneční soustavě.

Kvůli perturbacím dráhy se ztratilo mnoho periodických komet objevených v minulých desetiletích a stoletích. Jejich oběžné dráhy nebyly nikdy dostatečně přesně známé, abychom věděli, kdy a kde čekat jejich budoucí přiblížení. Někdy se díky tomu po zpětném vypočítání dráhy nově objevené komety zjistí, že se jedná o ztracenou kometu. Tento osud sdílí například Tempel-Swift-LINEAR, která byla objevená v roce 1869, ale po roce 1908 byla v důsledku poruchy způsobené Jupiterem ztracena. Náhodou byla znovu objevena až v pozorovacím programu LINEAR v roce 2001.

Oběžné dráhy

Pokud se objeví nová kometa, známe z krátkého pozorování jen malý úsek oběžné dráhy, proto se nejprve vypočítá její parabolická aproximace. Teprve po delším pozorování lze rozhodnout, zda je dráha eliptická nebo hyperbolická. Z přibližně 3400 komet, které známe, je:

  • 40 % komet na eliptických drahách, z toho:
    • 16 % krátkoperiodických (perioda je menší než 200 let)
    • 24 % dlouhoperiodických (perioda je větší než 200 let),
  • 49 % na parabolických drahách
  • 11 % na hyperbolických drahách

Velké procento parabolických drah, uvedené v předchozím výčtu, je zkreslující, neboť se jedná i o komety, u nichž doba pozorování byla příliš krátká na to, aby se rozhodlo, zda se pohybují po hyperbole nebo po velmi protáhlé elipse. Z komet, které byly pozorovány alespoň 240 dní, jen 3 % má parabolické dráhy.

Historie výzkumu komet

V každém okamžiku lze na obloze pozorovat desítky komet, avšak pouze za pomoci velkých dalekohledů,[5] pouhým okem jsou každý rok pozorovatelné pouze dvě až tři.[6]

První pozorování a názory

Průlet velké komety kolem Země z roku 1577 (dřevořezba)

V minulosti byly komety považovány za znamení zmaru, někdy byly dokonce znázorňovány jako útok nebeských bytostí proti obyvatelům Země. Někteří autoři interpretují zmínky o „padajících hvězdách“ v Gilgamešovi, Janově Apokalypse a Knize Henoch jako zmínky o kometách, případně o bolidech.

Babylóňané a někteří řečtí filosofové před Aristotelem považovali komety za nebeská tělesa, jiní pouze za atmosférické jevy. Aristotelés předložil ve svém díle Meteorologica[7] pohled na komety, který nakonec na dvě tisíciletí ovládl západní myšlení. Odmítl názory několika dřívějších filozofů, že komety jsou planety nebo alespoň jevy planetám podobné s odůvodněním, že planety se pohybují jen okolo zvěrokruhu, kdežto komety se objevují v kterékoliv části oblohy. Proto nemohou být ani konkunkcí dvou planet, které se skoro dotýkají, jak tvrdili Anaxagorás a Démokritos, ani nemohou být planetárním tělesem, které se zřídka ukazuje, jak tvrdili pythagorejci, protože se komet může ukázat více najednou. Přitom jsou komety málo pravidelné, vznikají a zanikají. Nechovají se tedy jako nebeská tělesa ale jako atmosférické jevy. Aristotelés popsal komety jako jevy z vrchní atmosféry, kde příležitostně vybuchují horké a suché plyny. Aristotelés považoval tento mechanismus za zodpovědný nejen za komety, ale i za meteory, polární záře a dokonce i za Mléčnou dráhu.[8]

Později několik klasických filozofů jeho názor na komety napadlo. Seneca ve svých Přírodovědeckých otázkách uvedl, že komety se pohybují po obloze pravidelně a nejsou rušené větrem, což odpovídá chování typickému spíše pro nebeská tělesa než pro atmosférické jevy. Připustil, že planety se mimo zvířetník neobjevují, neviděl však žádný důvod, proč by se planetám příbuzné objekty nemohly objevovat v kterékoliv části oblohy. I přes tuto vážnou výtku se zvítězil Aristotelovský názor, komety přešly do oboru meteorologie a astronomové o ně ztratili zájem.

Až teprve v 16. století se dokázalo, že komety musí existovat mimo atmosféru Země. Roku 1577 byla několik měsíců viditelná jasná kometa. Dánský astronom Tycho Brahe využil měření polohy komety, která provedl on sám a několik dalších pozorovatelů na různých místech na Zemi, a zjistil, že kometa nemá žádnou měřitelnou paralaxu. V rámci přesností těchto měření to znamenalo, že kometa musí být alespoň čtyřikrát dále od Země než Měsíc.

Studium oběžných drah komet

Parabolická oběžná dráha komety z roku 1680 načrtnutá v Newtonových Principiích

I když již bylo dokázáno, že komety patří na oblohu, o otázce, jak se pohybují po obloze, se debatovalo většinu následujícího staletí. Dokonce i po tom, co Johannes Kepler zjistil roku 1609, že se planety pohybují okolo Slunce po eliptických oběžných drahách, zdráhal se uvěřit, že jeho vlastní Keplerovy zákony, kterými se pohyb planet řídí, ovlivňují i pohyb ostatních objektů. Domníval se, že komety se pohybují mezi planetami po přímých drahách. Galileo Galilei, ačkoli byl oddaným stoupencem Mikuláše Koperníka, odmítl Tychonovo paralaktické pozorování a držel se aristotelovské představy pohybu po přímkách přes vrchní atmosféru.

První návrh, že Keplerovy zákony planetárních pohybů by měly platit i pro komety, předložil William Lower roku 1610. V následujících desetiletích další astronomové včetně Pierra Petita, Giovanniho Borelliho, Adriena Auzouta, Roberta Hooka a Giovanni Domenico Cassiniho předkládali argumenty ve prospěch tvrzení, že se komety okolo Slunce pohybují po eliptických nebo parabolických drahách, zatímco jiní, jako například Christiaan Huygens a Johannes Hevelius, podporovali hypotézu o přímém pohybu komet.

Záležitost vyřešila jasná kometa, kterou objevil Gottfried Kirch 14. listopadu 1680. Astronomové v celé Evropě sledovali její pohyb po obloze po několik měsíců. Ve svých Principiích z roku 1687 Isaac Newton dokázal, že objekt pohybující se podle jeho zákona o poklesu gravitační síly se čtvercem vzdálenosti musí letět po jedné z kuželoseček, a demonstroval, jak ztotožnit dráhu komety po obloze s parabolickou oběžnou dráhou, přičemž použil kometu z roku 1680 jako příklad.

V roce 1705 Edmond Halley aplikoval Newtonovu metodu na 24 pozorování komet mezi lety 1337 a 1698. Zjistil, že tři z nich — komety z let 1531, 1607 a 1682 — mají velmi podobné dráhové elementy a byl dále schopný zdůvodnit malé rozdíly v jejich oběžných drahách na základě gravitačního ovlivnění Jupiterem a Saturnem. Nabyl přesvědčení, že tyto tři úkazy byly výskyty téže komety a předpověděl, že se objeví znovu někdy roku 1758 nebo 1759. (Ještě před Halleyem Robert Hooke ztotožnil kometu z roku 1664 s další z roku 1618 a Giovanni Domenico Cassini vyslovil podezření o totožnosti komet z let 1577, 1665 a 1680. Oba se však mýlili.

Halleyova předpověď data návratu byla brzo upřesněná týmem tří francouzských matematiků. Alexis Clairaut, Joseph Lalande a Nicole-Reine Lepaute předpověděli datum průchodu komety perihelem v roce 1759 s přesností na jeden měsíc. Když se kometa objevila podle předpovědi, stala se známou jako Halleyova kometa (oficiální označení má 1P/Halley). Naposledy do vnitřních částí sluneční soustavy zavítala v roce 1986. Její další návrat se očekává v roce 2061.

Mezi kometami s natolik krátkými periodami, že byly podle historických záznamů několikrát pozorovány, je Halleyova kometa unikátní tím, že je stále dostatečně jasná na to, aby ji bylo možné pozorovat pouhým okem. Od potvrzení periodicity Halleyovy komety bylo pomocí dalekohledů objeveno mnoho dalších periodických komet. Druhá kometa, u které byla objevena periodická oběžná dráha, byla Enckeova kometa (oficiálně označená 2P/Encke). Mezi lety 18191821 německý matematik a fyzik Johann Franz Encke vypočítal oběžné dráhy série kometárních výskytů pozorovaných v letech 1786, 1795, 1805 a 1818 a vyvodil z nich, že jde o tutéž kometu a úspěšně předpověděl její návrat v roce 1822. Do roku 1900 bylo pozorováno 17 komet s opakovaným průchodem perihelem, které byly uznány za periodické. Do ledna 2005 byl tento status přiznán 164 kometám, ačkoli některé z nich mezitím zanikly nebo se ztratily.

Studium fyzikálních charakteristik

Už na začátku 18. století někteří vědci navrhli správné hypotézy fyzikálního složení komet. V roce 1755 Immanuel Kant vyslovil hypotézu, že komety jsou složené z nějaké těkavé látky, jejíž vypařování způsobuje jejich zářivý vzhled v blízkosti perihelu. V roce 1836 německý matematik Friedrich Wilhelm Bessel po pozorování proudů vypařování během návratu Halleyovy komety v roce 1835 přišel s myšlenkou, že reaktivní síly vypařující se látky by mohly být dostatečně velké na to, aby podstatně změnily oběžnou dráhu komety, a tvrdil, že negravitační poruchy dráhy Enckeovy komety vyplývají z tohoto mechanismu.

Další objev týkající se komet však zastínil tyto myšlenky na téměř jedno století. V období 18641866 italský astronom Giovanni Schiaparelli vypočítal oběžnou dráhu meteoritického roje Perseid a na základě podobnosti oběžných drah vyslovil správnou hypotézu, že Perseidy jsou fragmenty komety Swift-Tuttle. Souvislost mezi kometami a meteorickými roji dramaticky podtrhl výskyt velmi silného meteorického roje na dráze Bielovy komety roku 1872, u níž byl pozorovaný rozpad na dvě části během jejího návratu v roce 1846, a která už po roce 1852 nikdy nebyla pozorovaná. Vznikl model „štěrkového náspu“ (gravel bank) kometární struktury, podle kterého se komety skládají ze sypkých hromad malých kamenných objektů obalených ledovou vrstvou.

Do poloviny 20. století už měl tento model několik nedostatků: především nedokázal vysvětlit, jak těleso, které obsahovalo jen nevelké množství ledu, mohlo mít zářivé projevy vypařující se páry po několika průchodech perihelem. V roce 1950 Fred Lawrence Whipple navrhl, že namísto skalnatých objektů obsahujících málo ledu, jsou komety převážně ledové objekty obsahující malé množství prachu a úlomků hornin. Tento model „špinavé sněhové koule“ byl rychle přijat.

Výzkum komet sondami

Snímek povrchu komety 67P/Churyumov-Gerasimenko pořízený z výšky 10 km modulem Philae

Model sněhové koule se potvrdil, když soubor vesmírných sond (včetně sondy ESA Giotto a sovětské sondy Vega 1 a Vega 2) v roce 1986 proletěl komou Halleyovy komety, aby fotografovaly jádro a pozorovaly proudy vypařujícího se materiálu. Dne 21. září 2001 americká sonda Deep Space 1 prolétla okolo jádra Borrellyovy komety) a potvrdila, že vlastnosti Halleyovy komety platí i pro další komety.

Sonda Stardust, která odstartovala 7. února 1999, už 2. ledna 2004 sesbírala částečky komy komety Wild 2 a na zem je dopravila 15. ledna 2006.[9] Dne 4. července 2005 projektil sondy Deep Impact (sonda) narazil do komety Tempel 1 a vytvořil kráter s cílem prostudovat její nitro.

V roce 2011 se začalo uvažovat o tom, že v jádrech komet může existovat voda i v kapalném stavu. Ve vzorcích přivezených sondou Stardust od komety Wild 2 byly nalezeny minerály, které mohou vzniknout jen v rozmezí teplot od 50 do 200 °C.[10] Jde konkrétně o minerál cubanit, sulfid železa a mědi CuFe2S3, který se na Zemi vyskytuje velmi vzácně v oblastech s výskytem horkých podzemních vod.

Další výzkum

Budoucí vesmírné mise přidají další detaily k naší představě o složení komet. První z nich je v roce 2014 evropská sonda Rosetta, která úspěšně dosáhla oběžné dráhy komety 67P/Churyumov-Gerasimenko a umístila na její povrch miniaturní přistávací modul Philae.

Přehled úspěšných kometárních sond

Kometa Název sondy Datum průzkumu Vzdálenost
21P/Giacobini-Zinner ICE 11. září 1985 7870 km
1P/Halley Vega 1 6. března 1986 8900 km
1P/Halley Vega 2 9. března 1986 8030 km
1P/Halley Giotto 13. března 1986 596 km
26P/Grigg-Skjellerup Giotto 10. července 1992 200 km
45P/Honda-Mrkos-Pajdušáková Sakigake kolem 11. února 1996 asi 10 000 km
19P/Borrelly Deep Space 1 17. září 2001 2171 km
81P/Wild 2 Stardust 2. ledna 2004 250 km
9P/Tempel 1 Deep Impact 4. července 2005 500 km
67P/Churyumov-Gerasimenko Rosetta léto 2014 - prosinec 2015 desítky km
67P/Churyumov-Gerasimenko Philae (modul z Rosetty) podzim 2014 přistání na kometě

Velké komety

I když vnitřními částmi sluneční soustavy prolétnou ročně stovky komet, jen několik z nich zapůsobí i na veřejnost. Přibližně jednou za deset let se objeví kometa jasná natolik, aby mohla být pozorovatelná pouhým okem. Tyto komety jsou označované jako velké komety. V minulosti jasné komety způsobovaly mezi veřejností paniku a hysterii. Jejich zjevení bývalo považováno za zlé znamení. V nedávné minulosti, během přechodu Halleyovy komety roku 1910, Země procházela ohonem komety a noviny v té době mylně způsobily paniku, že v ohonu obsažený dikyan by mohl otrávit miliony lidí. V roce 1997 spustil příchod Hale-Boppovy komety hromadnou sebevraždu kultu Nebeská brána. Většina lidí však považuje velké komety za jev velmi krásný, ovšem poměrně neškodný.

Předpovědět, zda se nějaká kometa stane velkou kometou, je velmi těžké, protože na jasnost komety působí mnoho faktorů. Obecně řečeno, pokud má kometa velké a aktivní jádro, bude procházet blízko povrchu Slunce a není v momentě nejvyšší jasnosti v zákrytu za Sluncem, má velkou šanci se zařadit mezi velké komety. Přestože Kohoutkova kometa v roce 1973 všechna tato kritéria splňovala a bylo očekávané velké vesmírné divadlo, opak byl ale pravdou. Naopak kometa West, která se objevila o tři roky později a která se velkou kometou stát neměla, nakonec byla velmi působivá.

Ke konci 20. století zažilo lidstvo dlouhou přestávkou mezi objevením se velkých komet. Poté se objevily hned dvě velké komety v rychlém sledu — kometa Hjakutake v roce 1996 následovaná Hale-Boppovou kometou, která dosáhla maxima jasnosti v roce 1997, i když byla objevená jen dva roky před tím.

Zvláštní komety

Z tisíců známých komet jsou některé neobvyklé. Enckeova kometa má dráhu ležící mezi oběžnými dráhami Jupiteru a Merkuru. Naopak kometa Schwassmann-Wachmannova má nestabilní oběžnou dráhu, která celá leží mezi Jupiterem a Saturnem. Kometa Chiron, která má také nestabilní dráhu, tentokrát však mezi Saturnem a Uranem, byla nejprve klasifikovaná jako asteroid (dostala dokonce katalogové číslo 2060), později však byla zaznamenána její slabé koma. Podobně byla původně za asteroid považována kometa Shoemaker-Levy 2, dostala označení 1990 UL3. Některé blízkozemní planetky jsou považovány za vyhaslá jádra komet, ze kterých se už neuvolňují plyny.

Několikrát již byl pozorován rozpad jádra komety. Významným příkladem byla kometa Biela, která se rozlomila při průchodu perihelem v roce 1846. Dvě nově vzniklé komety potom byly pozorovány v roce 1852. Později se už nikdy nepozorovaly. Místo toho byly v letech 1872 a 1885, kdy měla kometa být viditelná, pozorovány velkolepé meteoritické roje. Slabý meteoritický roj Andromedidy, který je možné pozorovat každý rok v listopadu, je způsobený tím, že Země přechází původní oběžnou dráhou komety Biela.[11]

Rozpad v perihelu byl pozorován i u několika dalších komet, včetně velké komety West a komety Ikeya-Seki. Některé komety, které se pohybují po oběžných drahách ve skupinách, jsou považovány za části jednoho objektu, který se rozpadl.

Další významné pozorovaní kometárního rozpadu byl dopad komety Shoemaker-Levy 9, pozorovaný roku 1993. V době objevu procházela dráha komety v blízkosti Jupiteru, jehož gravitace kometu při blízkém průletu v roce 1992 zachytila. Tento průlet roztrhal kometu na stovky částí. Během šestí dní v červenci 1994 pak tyto kusy někdejší komety spadly na Jupiter. Poprvé tak astronomové mohli ve sluneční soustavě pozorovat srážku dvou objektů. Podobně se diskutuje, zda objekt zodpovědný roku 1908 za Tunguskou katastrofu nebyl jedním z fragmentů Enckeovy komety.

V současné době se díky stále zlepšující se pozorovací technice objevují nové a nové rozpadlé komety. Je již i jasné, že se komety rozpadají prakticky kdekoliv na jejich poutích sluneční soustavou (viz ).

Podle vědecké studie z roku 2021 mohl být objekt, který dopadl do oblasti budoucího Mexického zálivu na konci období křídy (před 66 miliony let) a vyhubil dinosaury a dalších 75 % tehdejších druhů ve skutečnosti dlouhoperiodickou kometou a nikoliv dosud favorizovaným asteroidem z kategorie uhlíkatých chondritů.[12]

Komety jako námět fikcí

Komety byly mnohokrát námětem pro autory literatury i filmu. V úplném rozporu se skutečností byly mnohdy vykreslovány jako tělesa nikoliv ledová, ale hořlavá.

  • Jules Verne Hector Servadac (česky Na kometě) (1877) je sice vysoce nepravděpodobná vize cestování sluneční soustavou na kometě, ale také výborné populární shrnutí astronomických znalostí 19. století.
  • H. G. Wells In the Days of the Comet (1905) popisuje, jak plyny z ohonu komety způsobí vznik utopie
  • František Běhounek popisuje v knize Robinsoni vesmíru (1958) výpravu, která má za úkol zabránit srážce komety se Zemí.
  • Tove Jansson ve své knize Kometa znázorňuje svět Mumínků ohrožovaný planoucí kometou.
  • Arthur C. Clarke v románu 2061: Odyssey Three (česky 2061: Třetí vesmírná odysea) popisuje výpravu na Halleyovu kometu.
  • V románu Heart of the Comet od Gregoryho Benforda a Davida Brina (1987) kolonizuje mezinárodní tým Halleyovu kometu stavbou příbytků pod ledem.
  • V románu Lucifer's Hammer (česky „Luciferovo kladivo“) od Larryho Nivena, je popsán apokalyptický příběh o přežití po dopadu komety na Zem.

Reference

  1. R. C. Selley; R. Cocks; I. Plimer. Encyclopedia of Geology. : Academic Press, 2004-12-30. 2750 s. Dostupné online. ISBN 978-0-12-369396-9. S. 179–184. (angličtina) 
  2. M. Wall. Earth Impact: Are Comets a Bigger Danger Than Asteroids?. https://www.space.com . 2014-06-18. Dostupné online. 
  3. TICHÝ, Miloš. Chemická rozdílnost komet má původ už v jejich zrodu . Observatoř Kleť, 2009-07-05 . Dostupné online. 
  4. Kernfysisch Versneller Instituut . Dostupné v archivu pořízeném dne 2006-06-15. 
  5. HORÁLEK, Petr. 7+1 perel astronomie: Komety jsou nejkrásnějším nebeským kýčem. 100+1 zahraniční zajímavost . 2021-11-04 . Dostupné online. 
  6. ČERNÝ, Jakub. Komety. astro.cz online. Česká astronomická společnost cit. 2022-12-31. Dostupné online. 
  7. ARISTOTÉLES. Meteorology online. 350 př. Kr. cit. 2011-06-12. Dostupné v archivu pořízeném dne 2011-06-29. (anglicky) 
  8. ŠPELDA, Daniel. Astronomie v antice. Ostrava: MONTANEX, a. s., 2006. 262 s. ISBN 80-7225-210-0. S. 122–124. 
  9. MARTINEK FRANTIŠEK, Martinek František. NASA dala nové úkoly dvěma úspěšným sondám online. Česká astronomická společnost, 2007-07-04 cit. 2011-06-12. Dostupné online. 
  10. TICHÝ, Miloš. Tekutá voda uvnitř komety online. Observatoř Kleť, 2011-04-07 cit. 2011-06-12. Dostupné online. 
  11. Meteor Showers Online online. cit. 2011-06-12. Kapitola Andromedids. Dostupné v archivu pořízeném dne 2013-06-01. (anglicky) 
  12. SOCHA, Vladimír. Dinosaury možná vyhubila kometa. OSEL.cz online. 22. února 2021. Dostupné online.  (česky)

Související článkyeditovat | editovat zdroj

Externí odkazyeditovat | editovat zdroj

Zdroj:https://cs.wikipedia.org?pojem=Kometa
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Úmrtí v roce 2021
Úniková rychlost
Ústava Spojených států amerických
Čínština
Čínské znaky
Čínský císař
Čao Wen-chua
Čarodějnictví
Časové pásmo
Černá díra
Černé moře
Černý trpaslík
Červený obr
Česká Kubice
Česká Wikipedie
Česká západní dráha
České království
Česko
Říše Ming
Římské číslice
Řecko
Šáhruch
Šablona:Cite book
Šablona:Cite journal
Šablona:Infobox - železniční trať/legenda
Šestiočka sadistická
Španělští Habsburkové
Španělská Florida
Španělské impérium
Španělské Nizozemí
Španělsko
Španělsko v době osvícenství
Švédsko
Ťia-ťing
Železniční napájecí soustava
Železniční trať Domažlice – Planá u Mariánských Lázní
Železniční trať Horažďovice předměstí – Domažlice
Železniční trať Nýřany – Heřmanova Huť
Železniční trať Plzeň–Cheb
Železniční trať Plzeň – Furth im Wald
Železniční trať Staňkov–Poběžovice
Železo
Život
1. březen
1. duben
1. leden
1. srpen
1. září
10. září
11. duben
11. listopad
11. srpen
11. září
12. únor
12. červen
13. únor
13. říjen
13. září
14. červen
14. červenec
14. listopad
14. srpen
15. červenec
15. duben
15. srpen
1512
1565
16. únor
16. duben
16. listopad
16. prosinec
16. srpen
16. století
1649
1653
1659
1664
1668
1669
1670
1671
1682
1684
1685
1697
1698
1699
17. červen
17. leden
17. prosinec
17. století
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
18. prosinec
18. století
1800
1801
1802
1804
1808
1810
1812
1815
1816
1829
1838
1855
1870
19. říjen
19. století
1920
1960
1973
1994
2. březen
2. tisíciletí
20. únor
20. červen
20. červenec
20. leden
20. listopad
20. prosinec
20. století
2005
2017
21. březen
21. květen
21. srpen
21. září
22. říjen
23. červen
23. květen
23. leden
24. únor
24. březen
24. květen
25. říjen
25. listopad
26. únor
26. červenec
26. březen
26. květen
26. leden
27. prosinec
28. březen
28. prosinec
28. srpen
28. září
3. září
30. říjen
30. září
31. květen
31. prosinec
4. červen
4. listopad
4. srpen
5. březen
5. srpen
6. prosinec
7. říjen
7. březen
7. leden
7. srpen
8. červen
8. červenec
8. srpen
81P/Wild-2
9. březen
9. září
Ašraf Ghaní
Abbás III.
Abenakové
Adrastea (měsíc)
Adrian Zingg
Afghánistán
Afrika
Akádie
Akrece
Aktivní galaktické jádro
Alaouite
Albánie
Americká válka za nezávislost
Amerika
Amharsko
Anglické království
Anglie
Anglo-španělská válka (1727–1729)
Anna Göldi
Anna Ivanovna
Anna Stuartovna
Appalačské pohoří
Aragonské království
Aristarchos ze Samu
Arizona
Arthur Eddington
Asie
Astrofotografie
Astronomická jednotka
Astronomie
Asymptotická větev obrů
Atom
Augusta Württemberská (1734–1787)
Austrálie
Autorita (knihovnictví)
Bílý trpaslík
Babylon (okres Domažlice)
Bahnstrecke Plzeň–Furth im Wald
Bastila
Bavorské kurfiřtství
Bavorsko
Berijev Be-200
Bitva na řece Čorna
Bitva na Abrahamových pláních
Bitva u Cassana
Bitva u Cullodenu
Bitva u Höchstädtu
Bitva u Malplaquet
Bitva u Oudenaarde
Bitva u Palásí
Bitva u Poltavy
Bitva u Quiberonu
Bitva u Ramillies
Bitva u Turína
Bitva u Varšavy (1920)
Bitva u Yorktownu (1781)
Bitva v zátoce Vigo
Blížejov
Bleskosvod
Boston
Bostonské pití čaje
Bourboni
Bourbonské Španělsko
Brestská pevnost
Britské impérium
Brumairový převrat
Brunšvicko-lüneburské kurfiřtství
Cape Breton
Carl Sagan
Casus belli
Celostátní dráha
Cenzorát
Champlainovo jezero
Charleston (Jižní Karolína)
Charles Alexandre de Calonne
Charles Bukowski
Charles Cornwallis, první markýz Cornwallis
Charles Louis Montesquieu
Charon (měsíc)
Chemická reakce
Chemický prvek
Chotěšov u Stoda
Chu Cung-sien
Claude de Villars
Commons:Featured pictures/cs
Connecticut (řeka)
Covid-19
Cung-tu
Dánsko-Norsko
Dějiny Anglie
Degenerovaný plyn
Deimos (měsíc)
Deklarace nezávislosti Spojených států amerických
Deklarace nezávislosti USA (Trumbull)
Devítiletá válka
Didius Iulianus
Diferenciální rotace
Digital object identifier
Dolní Kamenice (Holýšov)
Domažlice
Domenico Trezzini
Domobrana
Dopad neznámého tělesa na Jupiter roku 2009
Dráhová rezonance
Elektromagnetické spektrum
Elipsa
Eliptická galaxie
Emanuel Swedenborg
en:Jean Alaux
Encyklopedie
Encyklopedie aneb Racionální slovník věd, umění a řemesel
Energie
Epidemie
Etiopie
Europa (měsíc)
Evžen Savojský
Evropa
Excentricita dráhy
Exoplaneta
Falcké kurfiřtství
Federální okruhy Ruska
Filadelfský ústavní konvent
Filipína Alžběta Orleánská
Filip V. Španělský
Florida
Formation and evolution of the Solar System?oldid=364891809
Fosfidy
Fosilie
François-Joseph Gossec
François de Neufville de Villeroy
Francie
Francisco Zeno
Francouzi
Francouzské království
Francouzský král
Francouzsko-indiánská válka
František I. Rakouský
František II. Rákóczi
František Martin Pelcl
Franz Anton Mesmer
Frederik I. Švédský
Fred Hoyle
Fridrich I. Pruský
Fridrich II. Veliký
Fridrich Vilém I.
Furth im Wald
Furth im Wald–Plzeň-vasútvonal
Fyzika
Götingen
Galaktické jádro
Galaktický epicykl
Galaktický rok
Galaxie Mléčná dráha
Galaxie v Andromedě
Galileovy měsíce
Ganymed (měsíc)
Gemeinsame Normdatei
Geodata
Geologie
George Rooke
Georg Stahl
Gerd Müller
Gibraltar
Gravitační kolaps
Gravitace
Gregoriánský kalendář
Guido Starhemberg
Gunther Jakob
Habsburkové
Habsburská monarchie
Habsburské Španělsko
Haiti
Haitská revoluce
Hannoverské kurfiřtství
Havana
Heliocentrismus
Heliový záblesk
Helium
Hertzsprungův–Russellův diagram
Hertzsprungův–Russellův diagram#Horizontální větev
Hesensko-Kasselsko
Historie hypotéz vzniku a vývoje sluneční soustavy
Hlavní pás
Hlavní posloupnost
Hlavní strana
Hohenzollernové
Holýšov
Hradec u Stoda
Hromadná vymírání
Hubbleův vesmírný dalekohled
Hudsonův záliv
Hugenoti
Hustota
Hustota zalidnění
Hvězda
Hvězda typu T Tauri
Hvězdný vítr
Hvězdokupa
Hydrostatická rovnováha
Immanuel Kant
Indiáni
Infračervené záření
International Standard Book Number
International Standard Serial Number
Internet Archive
Io (měsíc)
Irokézové
Irsko
Itálie
Izotop
Józef Piłsudski
Jaan Kaplinski
Jaderná reakce
Jakobitské povstání
Jakub II. Stuart
James Fitzjames, vévoda z Berwicku
James Watt
Jan Antonín Otto Minquitz z Minquitzburgu
Jan Josef z Vrtby
Jan Nepomucký
Jan V. Portugalský
Japonsko
Jean-Baptiste Rey
Jean-Jacques Rousseau
Jen Sung
Jiří Grygar
Jiří I.
Jiří II.
Jiří II. (britský král)
Jiří III.
Jiří Pernes
Jižní Amerika
Jižní federální okruh
John Churchill, vévoda z Marlborough
John Leake
Josef Ferdinand Bavorský
Josef I. Habsburský
Josef II.
Joseph Wright of Derby
JSTOR
Jupiter (planeta)
Kábul
Křemičitany
Kanada
Karel Alexandr Württemberský
Karel II. Španělský
Karel II. Stuart
Karel VI.
Karel XII.
Kastilská koruna
Katalánské knížectví
Katalánsko
Kateřina II. Veliká
Kategorie:Čas
Kategorie:Články podle témat
Kategorie:Život
Kategorie:Dorozumívání
Kategorie:Geografie
Kategorie:Historie
Kategorie:Hlavní kategorie
Kategorie:Informace
Kategorie:Kultura
Kategorie:Lidé
Kategorie:Matematika
Kategorie:Narození v roce 1734
Kategorie:Příroda
Kategorie:Politika
Kategorie:Právo
Kategorie:Rekordy
Kategorie:Seznamy
Kategorie:Společnost
Kategorie:Sport
Kategorie:Technika
Kategorie:Umění
Kategorie:Věda
Kategorie:Vojenství
Kategorie:Vzdělávání
Kategorie:Zdravotnictví
Katolicismus
Kchang-si
Kelvin
Kerč
Klement XII.
Kmitání
Kolínské kurfiřtství
Kolize galaxie v Andromedě s Mléčnou dráhou
Kometa
Kongres Spojených států amerických
Kontinent
Kovy
Královské Uhersko
Království Velké Británie
Kráter
Kríkové
Kraje v Rusku
Krasnodar
Krasnodarský kraj
Kryštof Karel Gayer
Krymská válka
Krystalická struktura
Kubáň
Kuiperův pás
Kurt Biedenkopf
Květen
Kyjev
Kypr
Lady Diana Beauclerk
Lalibela
Ledový obr
Leopold I.
Letní olympijské hry 2020
Librační centrum
Library of Congress Control Number
Linia kolejowa Plzeň – Furth im Wald
Lisabonské zemětřesení
Lithium
Lokomotiva 754
Louise de Keroual
Louis Joseph de Bourbon, vévoda z Vendôme
Louis Lully
Ludvík Vilém I. Bádenský
Ludvík XIV.
Ludvík XV.
Ludvík XVI.
Luk
Lutyšské knížecí biskupství
Místní skupina galaxií
Místokrálovství Nové Španělsko
Měsíc
Měsíce Jupiteru
Měsíce Saturnu
Měsíc (satelit)
Měsíc planetky
Město-hrdina
Mahmud I.
Maine
Malá noční hudba
Mallorské království
Mantovské vévodství
Marianna Benti Bulgarelli
Marie I. Portugalská
Marie Terezie
Maroko
Mars (planeta)
Massachusetts
Maxmilián II. Emanuel
Menorca
Merkur (planeta)
Metalicita
Meteorit
Meteor Crater
Methan
Metis (měsíc)
Mezihvězdné prostředí
Michael Mark Woolfson
Michal Bedřich z Althanu
Mikmakové
Mikrometeorit
Milánské vévodství
Milavče
Minsk
Miroslav Tetter
Mississippi (řeka)
Mlhovina v Orionu
Mlhovinová hypotéza
Mobile
Model z Nice
Modrý obr
Mohawkové
Mohykáni
Molekulární mračno
Moment hybnosti
Morové epidemie v českých zemích
Moskva
Motorová jednotka 844
Motorový vůz 842
Mušketa
Mughalská říše
Murmansk
MusicBrainz
Nádir Šáh
Nápověda:Úvod
Nápověda:Úvod pro nováčky
Nápověda:Obsah
Národní knihovna České republiky
Národní knihovna Španělska
Národní knihovna Izraele
Národní parlamentní knihovna Japonska
Následník trůnu
Nýřany
Německo
Načezové
Nadace Wikimedia
Nadmořská výška
Nakamikado
Napoleon Bonaparte
National Archives and Records Administration
Nature
Neapolské království
Neptun (planeta)
Newfoundland
New Hampshire
Nicolaas Laurens Burman
Nikl
Nová Anglie
Nová Francie
Nové Skotsko
Nový Brunšvik
Nový Jižní Wales
Novorossijsk
Novorossijsk (rozcestník)
Nukleosyntéza
Nystadská smlouva
Oběžná dráha
Obyvatelná zóna
Ochrana životního prostředí
Oděsa
Oddělený disk
Olympijské hry
Online Computer Library Center
Oortův oblak
OpenStreetMap
Osmanská říše
Ostrov prince Edvarda
Osvračín
Otáčení
Ottův slovník naučný
Ottův slovník naučný/Novorossijsk
Oxidy
Oxid uhličitý
Pátek
Píka
Přístav
Pacifická astronomická společnost
Pandemie covidu-19
Pandemie covidu-19 v Česku
Panspermie
Papež
Parní stroj
Parsek
Pchin-jin
Pensacola
Personální unie
Peter Perez Burdett
Petrohrad
Petr Havel
Petr I. Veliký
Phobos (měsíc)
Pierre-Simon Laplace
Pierre Simon de Laplace
Piráti wo-kchou v éře Ťia-ťing
Planetární mlhovina
Planetární prstenec
Planetární soustava
Planeta
Planetesimála
Planetka
Planetologie
Ploutvonožci
Pluto (trpasličí planeta)
Plynný obr
Plzeň-Jižní Předměstí (nádraží)
Plzeň hlavní nádraží
Poštovní směrovací číslo
Poláci
Polské království
Pontiacovo povstání
Portál:Španělsko
Portál:Aktuality
Portál:Doprava
Portál:Geografie
Portál:Historie
Portál:Kanada
Portál:Kultura
Portál:Lidé
Portál:Náboženství
Portál:Novověk
Portál:Obsah
Portál:Příroda
Portál:Spojené státy americké
Portál:Sport
Portál:Válka
Portugalské království
Portugalsko
Posmrtné jméno
Povinná školní docházka
Povrch Země
Pozdní velké bombardování
Prokop Diviš
Proměnná hvězda
Protestantismus
Protohvězda
Protoplanetární disk
Protoplaneta
Provozovatel dráhy
Prstencová mlhovina
Pruské království
Prusko
Prusko-francouzská válka
Prusové
První dělení Polska
Q150701#identifiers
Q150701#identifiers|Editovat na Wikidatech
Q15760
Q15760#identifiers
Q15760#identifiers|Editovat na Wikidatech
Q2890323
Q803015
Q869045#identifiers
Q869045#identifiers|Editovat na Wikidatech
Québec
Queen Anne's War?oldid=1009855349
Rázová vlna
Radbuza
Radioaktivní datování
Rakouští Habsburkové
Rakouské arcivévodství
Rakouské císařství
Rakousko
Rakousko-turecká válka (1716–1718)
Rakousko-turecká válka (1787–1791)
Ralph Abercromby
Rastattský mír
Regio-Shuttle RS1
Richterova stupnice
Roční období
Robert Roy MacGregor
Rocheova mez
Rok
Ropná skvrna
Rozchod koleje
Rozloha
Rozptýlený disk
Ruština
Rudá armáda
Ruské impérium
Rusko
Rusko-turecká válka (1768–1774)
Sün-fu
Sü Chaj
Safíovci
Sardinie
Sardinské království
SARS-CoV-2
Saturn (planeta)
Savannah (řeka)
Savojské vévodství
Savojsko
Science
Sedmihradské knížectví
Sedmiletá válka
Senkaku
Sergej Adamovič Kovaljov
Sevastopol
Severní Amerika
Severní válka
Seznam světového dědictví v Africe#Etiopie
Shoemaker-Levy 9
Sicílie
Sicilské království
Skleníkové plyny
Skleníkový efekt
Skotské království
Skvrňany
Slapy
Slunce
Sluneční soustava
Sluneční vítr
Smlouva
Smolensk
Sněžná čára (astrofyzika)
Sonda Cassini
Soubor:胡宗憲.jpg
Soubor:236084main MilkyWay-full-annotated cs.jpg
Soubor:Artist's concept of collision at HD 172555.jpg
Soubor:Bandera de España 1701-1760.svg
Soubor:Banner of arms crown of Castille Habsbourg style.svg
Soubor:Barringer Meteor Crater, Arizona.jpg
Soubor:Before Destruction (35073757404).jpg
Soubor:Bouchot - Le general Bonaparte au Conseil des Cinq-Cents.jpg
Soubor:BSicon ÜST.svg
Soubor:BSicon ABZg+l.svg
Soubor:BSicon ABZg+nr.svg
Soubor:BSicon ABZgl.svg
Soubor:BSicon ABZgnl.svg
Soubor:BSicon ABZgnr.svg
Soubor:BSicon ABZgr.svg
Soubor:BSicon BHF.svg
Soubor:BSicon BST.svg
Soubor:BSicon BUE.svg
Soubor:BSicon eABZg+l.svg
Soubor:BSicon eABZgl.svg
Soubor:BSicon eBST.svg
Soubor:BSicon GRENZE.svg
Soubor:BSicon HST.svg
Soubor:BSicon KMW.svg
Soubor:BSicon KRZo.svg
Soubor:BSicon STR+INCIDO.svg
Soubor:BSicon STR+r.svg
Soubor:BSicon STRr.svg
Soubor:BSicon WBRÜCKE2.svg
Soubor:Catherine II by I.Argunov (1762, Russian museum).jpg
Soubor:Charles II (1670-80).jpg
Soubor:Coat of Arms of Novorossiysk.svg
Soubor:Coa Hungary Country History (14th century).svg
Soubor:Croix huguenote.svg
Soubor:Death of Father Sebastian Rale of the Society of Jesus.jpg
Soubor:Declaration of Independence (1819), by John Trumbull.jpg
Soubor:DeerfieldRaid1704.jpg
Soubor:Didius Julianus (cropped) - Residenz Museum - Munich.jpg
Soubor:Europe c. 1700.png
Soubor:EvacutionOfPortRoyal1710byCWJefferys.png
Soubor:Flag of Cross of Burgundy.svg
Soubor:Flag of England.svg
Soubor:Flag of Great Britain (1707–1800).svg
Soubor:Flag of Novorossiysk.svg
Soubor:Flag of Spain (1760–1785).svg
Soubor:HaverhillRaid1708.png
Soubor:JosephFerdinand.jpg
Soubor:Jozef Pilsudski1.jpg
Soubor:Lhborbits.png
Soubor:Louis XIV of France.jpg
Soubor:M42proplyds.jpg
Soubor:M57 The Ring Nebula.JPG
Soubor:Map of Russia - Krasnodar Krai (Crimea disputed).svg
Soubor:MassacreOfTheIndiansByOrderOfChurch.png
Soubor:Mohawk-kings.jpg
Soubor:Nouvelle-France map-en.svg
Soubor:Nov Pan.jpg
Soubor:Peter der-Grosse 1838.jpg
Soubor:Pierre-Simon Laplace.jpg
Soubor:Plzen cz railway-main-station 1.JPG
Soubor:Portrait, Pierre Le Moyne d'Iberville, Montréal Archives.jpg
Soubor:PortRoyalAcadia1702.jpg
Soubor:Protoplanetary-disk.jpg
Soubor:QueenAnnesWarBefore.svg
Soubor:Quibcardinaux2.jpg
Soubor:Royal Standard of King Louis XIV.svg
Soubor:Royal Standard of the King of France.svg
Soubor:SirJohnLeake.jpg
Soubor:Solar Life Cycle cs.svg
Soubor:Sun red giant cs.svg
Soubor:Vendome-and-PhilipV.jpg
Soubor:Vitčice - socha svatého Jana Nepomuckého.jpg
Soubor:Voyager 2 Neptune and Triton.jpg
Soubor:Western Europe Utrecht Treaty.jpg
Soubor:Wiki letter w.svg
Sovětsko-polská válka
Speciální:Co odkazuje na/Železniční trať Plzeň – Furth im Wald
Speciální:Hledání
Speciální:Kategorie
Speciální:Moje diskuse
Speciální:Moje příspěvky
Speciální:Náhodná stránka
Speciální:Nové stránky
Speciální:Poslední změny
Speciální:Související změny/Železniční trať Plzeň – Furth im Wald
Speciální:Speciální stránky
Speciální:Statistika
Speciální:Zdroje knih/0-670-80379-0
Speciální:Zdroje knih/0030062284
Speciální:Zdroje knih/1-58381-134-6
Speciální:Zdroje knih/80-204-0637-9
Speciální:Zdroje knih/80-204-0805-3
Speciální:Zdroje knih/80-7185-380-1
Speciální:Zdroje knih/80-7277-008-X
Speciální:Zdroje knih/80-85876-25-6
Speciální:Zdroje knih/80-902745-5-2
Speciální:Zdroje knih/978-0-300-05917-5
Speciální:Zdroje knih/978-0-471-24690-9
Speciální:Zdroje knih/978-0-520-05126-3
Speciální:Zdroje knih/978-0-582-42401-2
Speciální:Zdroje knih/978-0-7425-6094-9
Speciální:Zdroje knih/978-0-7735-2699-0
Speciální:Zdroje knih/978-0-8020-3755-8
Speciální:Zdroje knih/978-0-8032-3575-5
Speciální:Zdroje knih/978-0-8032-9861-3
Speciální:Zdroje knih/978-0-8078-2910-3
Speciální:Zdroje knih/978-0-8122-1869-5
Speciální:Zdroje knih/978-0-8173-0528-4
Speciální:Zdroje knih/978-0-8203-0305-5
Speciální:Zdroje knih/978-0-8263-0706-4
Speciální:Zdroje knih/978-0470092972
Speciální:Zdroje knih/978-1-85109-411-0
Speciální:Zdroje knih/978-1854109613
Speciální:Zdroje knih/978-84-16473-45-8
Speciální:Zdroje knih/9780874515268
Spirála
Spojené království
Spojené provincie nizozemské
Spojené státy americké
Společnost Hudsonova zálivu
Správa železnic
Srážka vlaků u Milavčí
Stát
Středomoří
St. Augustine (Florida)
St. John's (Newfoundland a Labrador)
Staňkov (okres Domažlice)
Stanislav I. Leszczyński
Stardust (sonda)
Starosta
Stephan Rautenstrauch
Stod
Století
Sulfidy
Supernova
Světelný rok
Světový oceán
Svatá říše římská
Svatý Kryštof a Nevis
Tálibán
Tření
Telefonní předvolba
Teorie chaosu
Teorie relativity
Teorie velkého impaktu
Teplota
Teplota tání
Terestrická planeta
Termonukleární fúze
Tigrajská lidově osvobozenecká fronta
Titan (měsíc)
Tlak
Tlučná
Tokio
Toleranční patent
Tomahavk
Tomas Venclova
Tony Esposito (lední hokejista)
Tovaryšstvo Ježíšovo
Triton (měsíc)
Tula
Turecko
Tuscarorové
Uhersko
Uhlík
Ukrajinština
UNESCO
Uran (planeta)
UTC+3
Utrechtský mír
Válka
Válka čtverné aliance
Válka krále Filipa
Válka krále Viléma
Válka královny Anny
Válka o španělské dědictví
Válka o bavorské dědictví
Válka o polské následnictví
Válka o rakouské dědictví
Válka v Tigraji
Vázaná rotace
Vít Vlnas
Vakcína proti covidu-19
Valencijské království
Vejprnice
Velká aliance
Velká francouzská revoluce
Velká jezera
Velký křach
Velký montréalský mír
Venuše (planeta)
Vesmír
Viktor Amadeus II.
Virginie
Virtual International Authority File
Vitčice
Vital Šyšov
Vladimir Mitrofanovič Puriškevič
Vodík
Voda
Voda na Marsu
Vodní pára
Volgograd
Voyager 2
Vypařování
Vznik a vývoj sluneční soustavy
Württemberské vévodství
Wang Č’ (pirát)
Wiki
Wikicitáty:Hlavní strana
Wikidata:Hlavní strana
Wikiknihy:Hlavní strana
Wikimedia Česká republika
Wikimedia Commons
Wikipedie:Údržba
Wikipedie:Časté chyby
Wikipedie:Často kladené otázky
Wikipedie:Článek týdne
Wikipedie:Článek týdne/2021
Wikipedie:Autorské právo#Publikování cizích autorských děl
Wikipedie:Citování Wikipedie
Wikipedie:Dobré články
Wikipedie:Dobré články#Portály
Wikipedie:Kontakt
Wikipedie:Nejlepší články
Wikipedie:Obrázek týdne
Wikipedie:Obrázek týdne/2021
Wikipedie:Ověřitelnost
Wikipedie:Pahýl
Wikipedie:Požadované články
Wikipedie:Pod lípou
Wikipedie:Portál Wikipedie
Wikipedie:Potřebuji pomoc
Wikipedie:Průvodce
Wikipedie:Seznam jazyků Wikipedie
Wikipedie:Velvyslanectví
Wikipedie:Vybraná výročí dne/srpen
Wikipedie:WikiProjekt Kvalita/Články k rozšíření
Wikipedie:WikiProjekt Překlad/Rady
Wikipedie:Zajímavosti
Wikipedie:Zajímavosti/2021
Wikipedie:Zdroje informací
Wikislovník:Hlavní strana
Wikiverzita:Hlavní strana
Wikizdroje:Hlavní strana
Wikizprávy:Hlavní strana
Wolfgang Amadeus Mozart
Wolfgang von Kempelen
WorldCat
Yves-Joseph Kerguélen-Trémarec
Záření
Zářivý výkon
Zářivost
Zákon zachování hybnosti
Západní Evropa
Závěť
Závist (okres Blansko)
Zakázané moře
Zbůch
Země
Zeměpisné souřadnice
Zemětřesení na Haiti 2021
Země prince Ruprechta
Zemská osa
Zubřina




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk