Heat transfer - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Heat transfer
 ...

Simulation of thermal convection in the Earth's mantle. Colors span from red and green to blue with decreasing temperatures. A hot, less-dense lower boundary layer sends plumes of hot material upwards, and cold material from the top moves downwards.

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species (mass transfer in the form of advection), either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

Heat conduction, also called diffusion, is the direct microscopic exchanges of kinetic energy of particles (such as molecules) or quasiparticles (such as lattice waves) through the boundary between two systems. When an object is at a different temperature from another body or its surroundings, heat flows so that the body and the surroundings reach the same temperature, at which point they are in thermal equilibrium. Such spontaneous heat transfer always occurs from a region of high temperature to another region of lower temperature, as described in the second law of thermodynamics.

Heat convection occurs when the bulk flow of a fluid (gas or liquid) carries its heat through the fluid. All convective processes also move heat partly by diffusion, as well. The flow of fluid may be forced by external processes, or sometimes (in gravitational fields) by buoyancy forces caused when thermal energy expands the fluid (for example in a fire plume), thus influencing its own transfer. The latter process is often called "natural convection". The former process is often called "forced convection." In this case, the fluid is forced to flow by use of a pump, fan, or other mechanical means.

Thermal radiation occurs through a vacuum or any transparent medium (solid or fluid or gas). It is the transfer of energy by means of photons or electromagnetic waves governed by the same laws.[1]

Overview

Earth's longwave thermal radiation intensity, from clouds, atmosphere and surface.

Heat transfer is the energy exchanged between materials (solid/liquid/gas) as a result of a temperature difference. The thermodynamic free energy is the amount of work that a thermodynamic system can perform. Enthalpy is a thermodynamic potential, designated by the letter "H", that is the sum of the internal energy of the system (U) plus the product of pressure (P) and volume (V). Joule is a unit to quantify energy, work, or the amount of heat.[2]

Heat transfer is a process function (or path function), as opposed to functions of state; therefore, the amount of heat transferred in a thermodynamic process that changes the state of a system depends on how that process occurs, not only the net difference between the initial and final states of the process.

Thermodynamic and mechanical heat transfer is calculated with the heat transfer coefficient, the proportionality between the heat flux and the thermodynamic driving force for the flow of heat. Heat flux is a quantitative, vectorial representation of heat-flow through a surface.[3]

In engineering contexts, the term heat is taken as synonymous to thermal energy. This usage has its origin in the historical interpretation of heat as a fluid (caloric) that can be transferred by various causes,[4] and that is also common in the language of laymen and everyday life.

The transport equations for thermal energy (Fourier's law), mechanical momentum (Newton's law for fluids), and mass transfer (Fick's laws of diffusion) are similar,[5][6] and analogies among these three transport processes have been developed to facilitate prediction of conversion from any one to the others.[6]

Thermal engineering concerns the generation, use, conversion, storage, and exchange of heat transfer. As such, heat transfer is involved in almost every sector of the economy.[7] Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.

Mechanisms

The four fundamental modes of heat transfer illustrated with a campfire

The fundamental modes of heat transfer are:

Advection
Advection is the transport mechanism of a fluid from one location to another, and is dependent on motion and momentum of that fluid.
Conduction or diffusion
The transfer of energy between objects that are in physical contact. Thermal conductivity is the property of a material to conduct heat and evaluated primarily in terms of Fourier's Law for heat conduction.
Convection
The transfer of energy between an object and its environment, due to fluid motion. The average temperature is a reference for evaluating properties related to convective heat transfer.
Radiation
The transfer of energy by the emission of electromagnetic radiation.

Advection

By transferring matter, energy—including thermal energy—is moved by the physical transfer of a hot or cold object from one place to another.[8] This can be as simple as placing hot water in a bottle and heating a bed, or the movement of an iceberg in changing ocean currents. A practical example is thermal hydraulics. This can be described by the formula:

where

  • is heat flux (W/m2),
  • is density (kg/m3),
  • is heat capacity at constant pressure (J/kg·K),
  • is the difference in temperature (K),
  • is velocity (m/s).

Conduction

On a microscopic scale, heat conduction occurs as hot, rapidly moving or vibrating atoms and molecules interact with neighboring atoms and molecules, transferring some of their energy (heat) to these neighboring particles. In other words, heat is transferred by conduction when adjacent atoms vibrate against one another, or as electrons move from one atom to another. Conduction is the most significant means of heat transfer within a solid or between solid objects in thermal contact. Fluids—especially gases—are less conductive. Thermal contact conductance is the study of heat conduction between solid bodies in contact.[9] The process of heat transfer from one place to another place without the movement of particles is called conduction, such as when placing a hand on a cold glass of water—heat is conducted from the warm skin to the cold glass, but if the hand is held a few inches from the glass, little conduction would occur since air is a poor conductor of heat. Steady state conduction is an idealized model of conduction that happens when the temperature difference driving the conduction is constant, so that after a time, the spatial distribution of temperatures in the conducting object does not change any further (see Fourier's law).[10] In steady state conduction, the amount of heat entering a section is equal to amount of heat coming out, since the change in temperature (a measure of heat energy) is zero.[9] An example of steady state conduction is the heat flow through walls of a warm house on a cold day—inside the house is maintained at a high temperature and, outside, the temperature stays low, so the transfer of heat per unit time stays near a constant rate determined by the insulation in the wall and the spatial distribution of temperature in the walls will be approximately constant over time.

Transient conduction (see Heat equation) occurs when the temperature within an object changes as a function of time. Analysis of transient systems is more complex, and analytic solutions of the heat equation are only valid for idealized model systems. Practical applications are generally investigated using numerical methods, approximation techniques, or empirical study.[9]

Convection

The flow of fluid may be forced by external processes, or sometimes (in gravitational fields) by buoyancy forces caused when thermal energy expands the fluid (for example in a fire plume), thus influencing its own transfer. The latter process is often called "natural convection". All convective processes also move heat partly by diffusion, as well. Another form of convection is forced convection. In this case the fluid is forced to flow by using a pump, fan or other mechanical means.

Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. Bulk motion of fluid enhances heat transfer in many physical situations, such as (for example) between a solid surface and the fluid.[11] Convection is usually the dominant form of heat transfer in liquids and gases. Although sometimes discussed as a third method of heat transfer, convection is usually used to describe the combined effects of heat conduction within the fluid (diffusion) and heat transference by bulk fluid flow streaming.[12] The process of transport by fluid streaming is known as advection, but pure advection is a term that is generally associated only with mass transport in fluids, such as advection of pebbles in a river. In the case of heat transfer in fluids, where transport by advection in a fluid is always also accompanied by transport via heat diffusion (also known as heat conduction) the process of heat convection is understood to refer to the sum of heat transport by advection and diffusion/conduction.

Free, or natural, convection occurs when bulk fluid motions (streams and currents) are caused by buoyancy forces that result from density variations due to variations of temperature in the fluid. Forced convection is a term used when the streams and currents in the fluid are induced by external means—such as fans, stirrers, and pumps—creating an artificially induced convection current.[13]

Convection-cooling

Convective cooling is sometimes described as Newton's law of cooling:

The rate of heat loss of a body is proportional to the temperature difference between the body and its surroundings.

However, by definition, the validity of Newton's law of Cooling requires that the rate of heat loss from convection be a linear function of ("proportional to") the temperature difference that drives heat transfer, and in convective cooling this is sometimes not the case. In general, convection is not linearly dependent on temperature gradients, and in some cases is strongly nonlinear. In these cases, Newton's law does not apply.

Convection vs. conduction

In a body of fluid that is heated from underneath its container, conduction and convection can be considered to compete for dominance. If heat conduction is too great, fluid moving down by convection is heated by conduction so fast that its downward movement will be stopped due to its buoyancy, while fluid moving up by convection is cooled by conduction so fast that its driving buoyancy will diminish. On the other hand, if heat conduction is very low, a large temperature gradient may be formed and convection might be very strong.

The Rayleigh number () is the product of the Grashof () and Prandtl () numbers. It is a measure which determines the relative strength of conduction and convection.[14]

where

  • g is acceleration due to gravity,
  • ρ is the density with being the density difference between the lower and upper ends,
  • μ is the dynamic viscosity,
  • α is the Thermal diffusivity,
  • β is the volume thermal expansivity (sometimes denoted α elsewhere),
  • T is the temperature,
  • ν is the kinematic viscosity, and
  • L is characteristic length.

The Rayleigh number can be understood as the ratio between the rate of heat transfer by convection to the rate of heat transfer by conduction; or, equivalently, the ratio between the corresponding timescales (i.e. conduction timescale divided by convection timescale), up to a numerical factor. This can be seen as follows, where all calculations are up to numerical factors depending on the geometry of the system.

The buoyancy force driving the convection is roughly , so the corresponding pressure is roughly . In steady state, this is canceled by the shear stress due to viscosity, and therefore roughly equals , where V is the typical fluid velocity due to convection and the order of its timescale.[15] The conduction timescale, on the other hand, is of the order of .

Convection occurs when the Rayleigh number is above 1,000–2,000.

Radiation

Red-hot iron object, transferring heat to the surrounding environment through thermal radiation

Radiative heat transfer is the transfer of energy via thermal radiation, i.e., electromagnetic waves.[1] It occurs across vacuum or any transparent medium (solid or fluid or gas).[16] Thermal radiation is emitted by all objects at temperatures above absolute zero, due to random movements of atoms and molecules in matter. Since these atoms and molecules are composed of charged particles (protons and electrons), their movement results in the emission of electromagnetic radiation which carries away energy. Radiation is typically only important in engineering applications for very hot objects, or for objects with a large temperature difference.

When the objects and distances separating them are large in size and compared to the wavelength of thermal radiation, the rate of transfer of radiant energy is best described by the Stefan-Boltzmann equation. For an object in vacuum, the equation is:

For radiative transfer between two objects, the equation is as follows:







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk