Free lattice - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Free lattice
 ...

In mathematics, in the area of order theory, a free lattice is the free object corresponding to a lattice. As free objects, they have the universal property.

Formal definition

Because the concept of a lattice can be axiomatised in terms of two operations and satisfying certain identities, the category of all lattices constitute a variety (universal algebra), and thus there exist (by general principles of universal algebra) free objects within this category: lattices where only those relations hold which follow from the general axioms.

These free lattices may be characterised using the relevant universal property. Concretely, free lattice is a functor from sets to lattices, assigning to each set the free lattice equipped with a set map assigning to each the corresponding element . The universal property of these is that there for any map from to some arbitrary lattice exists a unique lattice homomorphism satisfying , or as a commutative diagram:

The functor is left adjoint to the forgetful functor from lattices to their underlying sets.

It is frequently possible to prove things about the free lattice directly using the universal property, but such arguments tend to be rather abstract, so a concrete construction provides a valuable alternative presentation.

Semilattices

In the case of semilattices, an explicit construction of the free semilattice is straightforward to give; this helps illustrate several features of the definition by way of universal property. Concretely, the free semilattice may be realised as the set of all finite nonempty subsets of , with ordinary set union as the join operation . The map maps elements of to singleton sets, i.e., for all . For any semilattice and any set map , the corresponding universal morphism is given by

where denotes the semilattice operation in .

This form of is forced by the universal property: any can be written as a finite union of elements on the form for some , the equality in the universal property says , and finally the homomorphism status of implies for all . Any extension of to infinite subsets of (if there even is one) need however not be uniquely determined by these conditions, so there cannot in be any elements corresponding to infinite subsets of .

Lower semilattices

It is similarly possible to define a free functor for lower semilattices, but the combination








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk