Final drive ratio - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Final drive ratio
 ...
Transmission of motion and force by gear wheels, compound train.[1]
Illustration by Georgius Agricola (1580) showing a toothed wheel that engages a slotted cylinder to form a gear train that transmits power from a human-powered treadmill to mining pump.

A gear train or gear set is a machine element of a mechanical system formed by mounting two or more gears on a frame such that the teeth of the gears engage.

Gear teeth are designed to ensure the pitch circles of engaging gears roll on each other without slipping, providing a smooth transmission of rotation from one gear to the next.[2] Features of gears and gear trains include:

The transmission of rotation between contacting toothed wheels can be traced back to the Antikythera mechanism of Greece and the south-pointing chariot of China. Illustrations by the Renaissance scientist Georgius Agricola show gear trains with cylindrical teeth. The implementation of the involute tooth yielded a standard gear design that provides a constant speed ratio.

Gear ratio

Two meshed spur gears showing tangent contact between their pitch circles, each illustrated with broken blue lines; the gear on the left has 10 teeth and the gear on the right has 15 teeth.

Dimensions and terms

The pitch circle of a given gear is determined by the tangent point contact between two meshing gears; for example, two spur gears mesh together when their pitch circles are tangent, as illustrated.[3]: 529 

The pitch diameter is the diameter of a gear's pitch circle, measured through that gear's rotational centerline, and the pitch radius is the radius of the pitch circle.[3]: 529  The distance between the rotational centerlines of two meshing gears is equal to the sum of their respective pitch radii.[3]: 533 

The circular pitch is the distance, measured along the pitch circle, between one tooth and the corresponding point on an adjacent tooth.[3]: 529 

The number of teeth per gear is an integer determined by the pitch circle and circular pitch.

Relationships

Spur gear tooth dimensions and how they are measured:
  • t = tooth thickness, along the pitch circle
  • p = circular pitch, along the pitch circle
  • a = addendum, radially
  • b = dedendum, radially
In this example, the gear has 20 teeth.

The circular pitch of a gear can be defined as the circumference of the pitch circle using its pitch radius divided by the number of teeth :[3]: 530 

The thickness of each tooth, measured through the pitch circle, is equal to the gap between neighboring teeth (also measured through the pitch circle) to ensure the teeth on adjacent gears, cut to the same tooth profile, can mesh without interference. This means the circular pitch is equal to twice the thickness of a tooth,[3]: 535 

In the United States, the diametral pitch is the number of teeth on a gear divided by the pitch diameter; for SI countries, the module is the reciprocal of this value.[3]: 529  For any gear, the relationship between the number of teeth, diametral pitch or module, and pitch diameter is given by:

Since the pitch diameter is related to circular pitch as

this means

Rearranging, we obtain a relationship between diametral pitch and circular pitch:[3]: 530 

Gear or speed ratio

Two meshing gears transmit rotational motion; note difference in rotational speeds is equal to the reciprocal of the ratio between the number of teeth on the two gears

For a pair of meshing gears, the angular speed ratio, also known as the gear ratio, can be computed from the ratio of the pitch radii or the ratio of the number of teeth on each gear. Define the angular speed ratio of two meshed gears A and B as the ratio of the magnitude of their respective angular velocities:

Here, subscripts are used to designate the gear, so gear A has a radius of and angular velocity of with teeth, which meshes with gear B which has corresponding values for radius , angular velocity , and teeth.

When these two gears are meshed and turn without slipping, the velocity of the tangent point where the two pitch circles come in contact is the same on both gears, and is given by:[3]: 533 

Rearranging, the ratio of angular velocity magnitudes is the inverse of the ratio of pitch circle radii:

Therefore, the angular speed ratio can be determined from the respective pitch radii:[3]: 533, 552 

For example, if gear A has a pitch circle radius of 1 in (25 mm) and gear B has a pitch circle radius of 2 in (51 mm), the angular speed ratio








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk