Elopocephala - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Elopocephala
 ...

Teleost
Temporal range: Early Triassic–Recent[1][2]
Teleosts of different orders, painted by Castelnau, 1856 (left to right, top to bottom): Fistularia tabacaria (Syngnathiformes), Mylossoma duriventre (Characiformes), Mesonauta acora (Cichliformes), Corydoras splendens and Pseudacanthicus spinosus (Siluriformes), Acanthurus coeruleus (Acanthuriformes), Stegastes pictus (Incertae sedis, Pomacentridae)
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Infraclass: Teleosteomorpha
Division: Teleostei
J. P. Müller, 1845[3]
Subdivisions

See text

Teleostei (/ˌtɛliˈɒsti/; Greek teleios "complete" + osteon "bone"), members of which are known as teleosts (/ˈtɛliɒsts, ˈtli-/),[4] is, by far, the largest infraclass in the class Actinopterygii, the ray-finned fishes,[a] and contains 96% of all extant species of fish. Teleosts are arranged into about 40 orders and 448 families. Over 26,000 species have been described. Teleosts range from giant oarfish measuring 7.6 m (25 ft) or more, and ocean sunfish weighing over 2 t (2.0 long tons; 2.2 short tons), to the minute male anglerfish Photocorynus spiniceps, just 6.2 mm (0.24 in) long. Including not only torpedo-shaped fish built for speed, teleosts can be flattened vertically or horizontally, be elongated cylinders or take specialised shapes as in anglerfish and seahorses.

The difference between teleosts and other bony fish lies mainly in their jaw bones; teleosts have a movable premaxilla and corresponding modifications in the jaw musculature which make it possible for them to protrude their jaws outwards from the mouth. This is of great advantage, enabling them to grab prey and draw it into the mouth. In more derived teleosts, the enlarged premaxilla is the main tooth-bearing bone, and the maxilla, which is attached to the lower jaw, acts as a lever, pushing and pulling the premaxilla as the mouth is opened and closed. Other bones further back in the mouth serve to grind and swallow food. Another difference is that the upper and lower lobes of the tail (caudal) fin are about equal in size. The spine ends at the caudal peduncle, distinguishing this group from other fish in which the spine extends into the upper lobe of the tail fin.

Teleosts have adopted a range of reproductive strategies. Most use external fertilisation: the female lays a batch of eggs, the male fertilises them and the larvae develop without any further parental involvement. A fair proportion of teleosts are sequential hermaphrodites, starting life as females and transitioning to males at some stage, with a few species reversing this process. A small percentage of teleosts are viviparous and some provide parental care with typically the male fish guarding a nest and fanning the eggs to keep them well-oxygenated.

Teleosts are economically important to humans, as is shown by their depiction in art over the centuries. The fishing industry harvests them for food, and anglers attempt to capture them for sport. Some species are farmed commercially, and this method of production is likely to be increasingly important in the future. Others are kept in aquariums or used in research, especially in the fields of genetics and developmental biology.

Anatomy

Skull and jaw anatomy

Distinguishing features of the teleosts are mobile premaxilla, elongated neural arches at the end of the caudal fin and unpaired basibranchial toothplates.[5] The premaxilla is unattached to the neurocranium (braincase); it plays a role in protruding the mouth and creating a circular opening. This lowers the pressure inside the mouth, sucking the prey inside. The lower jaw and maxilla are then pulled back to close the mouth, and the fish is able to grasp the prey. By contrast, mere closure of the jaws would risk pushing food out of the mouth. In more advanced teleosts, the premaxilla is enlarged and has teeth, while the maxilla is toothless. The maxilla functions to push both the premaxilla and the lower jaw forward. To open the mouth, an adductor muscle pulls back the top of the maxilla, pushing the lower jaw forward. In addition, the maxilla rotates slightly, which pushes forward a bony process that interlocks with the premaxilla.[6]

Caudal skeleton showing symmetrical (homocercal) tail

The pharyngeal jaws of teleosts, a second set of jaws contained within the throat, are composed of five branchial arches, loops of bone which support the gills. The first three arches include a single basibranchial surrounded by two hypobranchials, ceratobranchials, epibranchials and pharyngobranchials. The median basibranchial is covered by a toothplate. The fourth arch is composed of pairs of ceratobranchials and epibranchials, and sometimes additionally, some pharyngobranchials and a basibranchial. The base of the lower pharyngeal jaws is formed by the fifth ceratobranchials while the second, third and fourth pharyngobranchials create the base of the upper. In the more basal teleosts the pharyngeal jaws consist of well-separated thin parts that attach to the neurocranium, pectoral girdle, and hyoid bar. Their function is limited to merely transporting food, and they rely mostly on lower pharyngeal jaw activity. In more derived teleosts the jaws are more powerful, with left and right ceratobranchials fusing to become one lower jaw; the pharyngobranchials fuse to create a large upper jaw that articulates with the neurocranium. They have also developed a muscle that allows the pharyngeal jaws to have a role in grinding food in addition to transporting it.[7]

The caudal fin is homocercal, meaning the upper and lower lobes are about equal in size. The spine ends at the caudal peduncle, the base of the caudal fin, distinguishing this group from those in which the spine extends into the upper lobe of the caudal fin, such as most fish from the Paleozoic (541 to 252 million years ago). The neural arches are elongated to form uroneurals which provide support for this upper lobe.[6] In addition, the hypurals, bones that form a flattened plate at the posterior end of the vertebral column, are enlarged providing further support for the caudal fin.[8]

In general, teleosts tend to be quicker and more flexible than more basal bony fishes. Their skeletal structure has evolved towards greater lightness. While teleost bones are well calcified, they are constructed from a scaffolding of struts, rather than the dense cancellous bones of holostean fish. In addition, the lower jaw of the teleost is reduced to just three bones; the dentary, the angular bone and the articular bone.[9]

Evolution and phylogeny

External relationships

The teleosts were first recognised as a distinct group by the German ichthyologist Johannes Peter Müller in 1845.[10] The name is from Greek teleios, "complete" + osteon, "bone".[11] Müller based this classification on certain soft tissue characteristics, which would prove to be problematic, as it did not take into account the distinguishing features of fossil teleosts. In 1966, Greenwood et al. provided a more solid classification.[10][12] The oldest fossils of teleosteomorphs (the stem group from which teleosts later evolved) date back to the Triassic period (Prohalecites, Pholidophorus).[13][14] However, it has been suggested that teleosts probably first evolved already during the Paleozoic era.[15] During the Mesozoic and Cenozoic eras they diversified widely, and as a result, 96% of all living fish species are teleosts.[16]

The cladogram below shows the evolutionary relationships of the teleosts to other extant clades of bony fish,[15] and to the four-limbed vertebrates (tetrapods) that evolved from a related group of bony fish during the Devonian period.[17][18] Approximate divergence dates (in millions of years, mya) are from Near et al., 2012.[15]

Euteleostomi/
Osteichthyes

Internal relationships

The phylogeny of the teleosts has been subject to long debate, without consensus on either their phylogeny or the timing of the emergence of the major groups before the application of modern DNA-based cladistic analysis. Near et al. (2012) explored the phylogeny and divergence times of every major lineage, analysing the DNA sequences of 9 unlinked genes in 232 species. They obtained well-resolved phylogenies with strong support for the nodes (so, the pattern of branching shown is likely to be correct). They calibrated (set actual values for) branching times in this tree from 36 reliable measurements of absolute time from the fossil record.[15] The teleosts are divided into the major clades shown on the cladogram,[19] with dates, following Near et al.[15] More recent research divide the teleosts into two major groups: Eloposteoglossocephala (Elopomorpha + Osteoglossomorpha) and Clupeocephala (the rest of the teleosts).[20][21]

Teleostei
Eloposteoglossocephala
Elopomorpha

Elopiformes (tenpounders, tarpons)

Zdroj:https://en.wikipedia.org?pojem=Elopocephala
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk


Albuliformes (Japanese gissus and bonefishes)