Discrete Morse theory - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Discrete Morse theory
 ...

Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces,[1] homology computation,[2][3] denoising,[4] mesh compression,[5] and topological data analysis.[6]

Notation regarding CW complexes

Let be a CW complex and denote by its set of cells. Define the incidence function in the following way: given two cells and in , let be the degree of the attaching map from the boundary of to . The boundary operator is the endomorphism of the free abelian group generated by defined by

It is a defining property of boundary operators that . In more axiomatic definitions[7] one can find the requirement that

which is a consequence of the above definition of the boundary operator and the requirement that .

Discrete Morse functions

A real-valued function is a discrete Morse function if it satisfies the following two properties:

  1. For any cell , the number of cells in the boundary of which satisfy is at most one.
  2. For any cell , the number of cells containing in their boundary which satisfy is at most one.

It can be shown[8] that the cardinalities in the two conditions cannot both be one simultaneously for a fixed cell , provided that is a regular CW complex. In this case, each cell can be paired with at most one exceptional cell : either a boundary cell with larger value, or a co-boundary cell with smaller value. The cells which have no pairs, i.e., whose function values are strictly higher than their boundary cells and strictly lower than their co-boundary cells are called critical cells. Thus, a discrete Morse function partitions the CW complex into three distinct cell collections: , where:

  1. denotes the critical cells which are unpaired,
  2. denotes cells which are paired with boundary cells, and
  3. denotes cells which are paired with co-boundary cells.

By construction, there is a bijection of sets between -dimensional cells in and the -dimensional cells in , which can be denoted by for each natural number . It is an additional technical requirement that for each , the degree of the attaching map from the boundary of to its paired cell is a unit in the underlying ring of . For instance, over the integers , the only allowed values are . This technical requirement is guaranteed, for instance, when one assumes that is a regular CW complex over .

The fundamental result of discrete Morse theory establishes that the CW complex is isomorphic on the level of homology to a new complex consisting of only the critical cells. The paired cells in and describe gradient paths between adjacent critical cells which can be used to obtain the boundary operator on








Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk