Compact operator - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Compact operator
 ...

In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of (subsets with compact closure in ). Such an operator is necessarily a bounded operator, and so continuous.[1] Some authors require that are Banach, but the definition can be extended to more general spaces.

Any bounded operator that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators,[1] so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved question for many years; in 1973 Per Enflo gave a counter-example, building on work by Grothendieck and Banach.[2]

The origin of the theory of compact operators is in the theory of integral equations, where integral operators supply concrete examples of such operators. A typical Fredholm integral equation gives rise to a compact operator K on function spaces; the compactness property is shown by equicontinuity. The method of approximation by finite-rank operators is basic in the numerical solution of such equations. The abstract idea of Fredholm operator is derived from this connection.

Equivalent formulations

A linear map between two topological vector spaces is said to be compact if there exists a neighborhood of the origin in such that is a relatively compact subset of .[3]

Let be normed spaces and a linear operator. Then the following statements are equivalent, and some of them are used as the principal definition by different authors[4]

  • is a compact operator;
  • the image of the unit ball of under is relatively compact in ;
  • the image of any bounded subset of under is relatively compact in ;
  • there exists a neighbourhood of the origin in and a compact subset such that ;
  • for any bounded sequence in , the sequence contains a converging subsequence.

If in addition is Banach, these statements are also equivalent to:

  • the image of any bounded subset of under is totally bounded in .

If a linear operator is compact, then it is continuous.

Important properties

In the following, are Banach spaces, is the space of bounded operators under the operator norm, and denotes the space of compact operators . denotes the identity operator on , , and .

  • is a closed subspace of (in the norm topology). Equivalently,[5]
    • given a sequence of compact operators mapping (where are Banach) and given that converges to with respect to the operator norm, is then compact.
  • Conversely, if are Hilbert spaces, then every compact operator from is the limit of finite rank operators. Notably, this "approximation property" is false for general Banach spaces X and Y.[4]
  •   In particular, forms a two-sided ideal in .
  • Any compact operator is strictly singular, but not vice versa.[6]
  • A bounded linear operator between Banach spaces is compact if and only if its adjoint is compact (Schauder's theorem).
    • If is bounded and compact, then:
      • the closure of the range of is separable.[5][7]
      • if the range of is closed in Y, then the range of is finite-dimensional.[5][7]
  • If






Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk