Bogoliubov transformation - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Bogoliubov transformation
 ...

In theoretical physics, the Bogoliubov transformation, also known as the Bogoliubov–Valatin transformation, was independently developed in 1958 by Nikolay Bogolyubov and John George Valatin for finding solutions of BCS theory in a homogeneous system.[1][2] The Bogoliubov transformation is an isomorphism of either the canonical commutation relation algebra or canonical anticommutation relation algebra. This induces an autoequivalence on the respective representations. The Bogoliubov transformation is often used to diagonalize Hamiltonians, which yields the stationary solutions of the corresponding Schrödinger equation. The Bogoliubov transformation is also important for understanding the Unruh effect, Hawking radiation, Davies-Fulling radiation (moving mirror model), pairing effects in nuclear physics, and many other topics.

The Bogoliubov transformation is often used to diagonalize Hamiltonians, with a corresponding transformation of the state function. Operator eigenvalues calculated with the diagonalized Hamiltonian on the transformed state function thus are the same as before.

Single bosonic mode example

Consider the canonical commutation relation for bosonic creation and annihilation operators in the harmonic oscillator basis

Define a new pair of operators

for complex numbers u and v, where the latter is the Hermitian conjugate of the first.

The Bogoliubov transformation is the canonical transformation mapping the operators and to and . To find the conditions on the constants u and v such that the transformation is canonical, the commutator is evaluated, namely,

It is then evident that is the condition for which the transformation is canonical.

Since the form of this condition is suggestive of the hyperbolic identity

the constants u and v can be readily parametrized as

This is interpreted as a linear symplectic transformation of the phase space. By comparing to the Bloch–Messiah decomposition, the two angles and correspond to the orthogonal symplectic transformations (i.e., rotations) and the squeezing factor corresponds to the diagonal transformation.

Applications

The most prominent application is by Nikolai Bogoliubov himself in the context of superfluidity.[3][4] Other applications comprise Hamiltonians and excitations in the theory of antiferromagnetism.[5] When calculating quantum field theory in curved spacetimes the definition of the vacuum changes, and a Bogoliubov transformation between these different vacua is possible. This is used in the derivation of Hawking radiation. Bogoliubov transforms are also used extensively in quantum optics, particularly when working with gaussian unitaries (such as beamsplitters, phase shifters, and squeezing operations).

Fermionic mode

For the anticommutation relations

the Bogoliubov transformation is constrained by . Therefore, the only non-trivial possibility is corresponding to particle–antiparticle interchange (or particle–hole interchange in many-body systems) with the possible inclusion of a phase shift. Thus, for a single particle, the transformation can only be implemented (1) for a Dirac fermion, where particle and antiparticle are distinct (as opposed to a Majorana fermion or chiral fermion), or (2) for multi-fermionic systems, in which there is more than one type of fermion.

Applications

The most prominent application is again by Nikolai Bogoliubov himself, this time for the BCS theory of superconductivity.[5][6][7][8] The point where the necessity to perform a Bogoliubov transform becomes obvious is that in mean-field approximation the Hamiltonian of the system can be written in both cases as a sum of bilinear terms in the original creation and destruction operators, involving finite terms, i.e. one must go beyond the usual Hartree–Fock method. In particular, in the mean-field Bogoliubov–de Gennes Hamiltonian formalism with a superconducting pairing term such as , the Bogoliubov transformed operators annihilate and create quasiparticles (each with well-defined energy, momentum and spin but in a quantum superposition of electron and hole state), and have coefficients and given by eigenvectors of the Bogoliubov–de Gennes matrix. Also in nuclear physics, this method is applicable, since it may describe the "pairing energy" of nucleons in a heavy element.[9]

Multimode example

The Hilbert space under consideration is equipped with these operators, and henceforth describes a higher-dimensional quantum harmonic oscillator (usually an infinite-dimensional one).

The ground state of the corresponding Hamiltonian is annihilated by all the annihilation operators:







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk