Auger bit - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Auger bit
 ...
From top: Spade, brad point, masonry, and twist drills bits
Drill bit (upper left), mounted on a pistol-grip electric drill
A set of masonry drills

A drill bit is a cutting tool used in a drill to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.

Drills come in standardized drill bit sizes. A comprehensive drill bit and tap size chart lists metric and imperial sized drills alongside the required screw tap sizes. There are also certain specialized drill bits that can create holes with a non-circular cross-section.[1]

Characteristics

Drill geometry has several characteristics:

  • The spiral (or rate of twist) in the drill bit controls the rate of chip removal. A fast spiral (high twist rate or "compact flute") drill bit is used in high feed rate applications under low spindle speeds, where removal of a large volume of chips is required. Low spiral (low twist rate or "elongated flute") drill bits are used in cutting applications where high cutting speeds are traditionally used, and where the material has a tendency to gall on the bit or otherwise clog the hole, such as aluminum or copper.
  • The point angle, or the angle formed at the tip of the bit, is determined by the material the bit will be operating in. Harder materials require a larger point angle, and softer materials require a sharper angle. The correct point angle for the hardness of the material influences wandering, chatter, hole shape, and wear rate.
  • The lip angle is the angle between the face of the cut material and the flank of the lip, and determines the amount of support provided to the cutting edge. A greater lip angle will cause the bit to cut more aggressively under the same amount of point pressure as a bit with a smaller lip angle. Both conditions can cause binding, wear, and eventual catastrophic failure of the tool. The proper amount of lip clearance is determined by the point angle. A very acute point angle has more web surface area presented to the work at any one time, requiring an aggressive lip angle, where a flat bit is extremely sensitive to small changes in lip angle due to the small surface area supporting the cutting edges.
  • The functional length of a bit determines how deep a hole can be drilled, and also determines the stiffness of the bit and accuracy of the resultant hole. While longer bits can drill deeper holes, they are more flexible meaning that the holes they drill may have an inaccurate location or wander from the intended axis. Twist drill bits are available in standard lengths, referred to as Stub-length or Screw-Machine-length (short), the extremely common Jobber-length (medium), and Taper-length or Long-Series (long).

Most drill bits for consumer use have straight shanks. For heavy duty drilling in industry, bits with tapered shanks are sometimes used. Other types of shank used include hex-shaped, and various proprietary quick release systems.

The diameter-to-length ratio of the drill bit is usually between 1:1 and 1:10. Much higher ratios are possible (e.g., "aircraft-length" twist bits, pressured-oil gun drill bits, etc.), but the higher the ratio, the greater the technical challenge of producing good work.

The best geometry to use depends upon the properties of the material being drilled. The following table lists geometries recommended for some commonly drilled materials.

Tool geometry[2]
Workpiece material Point angle Helix angle Lip relief angle
Aluminum
90–135 32–48 12–26
90–118 0–20 12–26
90–118 24–32 7–20
118–135 24–32 7–24
118–135 24–32 7–24
Plastics
60–90 0–20 12–26

Materials

Titanium nitride coated twist bit

Many different materials are used for or on drill bits, depending on the required application. Many hard materials, such as carbides, are much more brittle than steel, and are far more subject to breaking, particularly if the drill is not held at a very constant angle to the workpiece; e.g., when hand-held.

Steels

  • Soft low-carbon steel bits are inexpensive, but do not hold an edge well and require frequent sharpening. They are used only for drilling wood; even working with hardwoods rather than softwoods can noticeably shorten their lifespan.
  • Bits made from high-carbon steel are more durable than low-carbon steel bits due to the properties conferred by hardening and tempering the material. If they are overheated (e.g., by frictional heating while drilling) they lose their temper, resulting in a soft cutting edge. These bits can be used on wood or metal.
  • High-speed steel (HSS) is a form of tool steel; HSS bits are hard and much more resistant to heat than high-carbon steel. They can be used to drill metal, hardwood, and most other materials at greater cutting speeds than carbon-steel bits, and have largely replaced carbon steels.
  • Cobalt steel alloys are variations on high-speed steel that contain more cobalt. They hold their hardness at much higher temperatures and are used to drill stainless steel and other hard materials. The main disadvantage of cobalt steels is that they are more brittle than standard HSS.

Others

  • Tungsten carbide and other carbides are extremely hard and can drill virtually all materials, while holding an edge longer than other bits. The material is expensive and much more brittle than steels; consequently they are mainly used for drill-bit tips, small pieces of hard material fixed or brazed onto the tip of a bit made of less hard metal. However, it is becoming common in job shops to use solid carbide bits. In very small sizes it is difficult to fit carbide tips; in some industries, most notably printed circuit board manufacturing, requiring many holes with diameters less than 1 mm, solid carbide bits are used.
  • Polycrystalline diamond (PCD) is among the hardest of all tool materials and is therefore extremely resistant to wear. It consists of a layer of diamond particles, typically about 0.5 mm (0.020 in) thick, bonded as a sintered mass to a tungsten-carbide support. Bits are fabricated using this material by either brazing small segments to the tip of the tool to form the cutting edges or by sintering PCD into a vein in the tungsten-carbide "nib". The nib can later be brazed to a carbide shaft; it can then be ground to complex geometries that would otherwise cause braze failure in the smaller "segments". PCD bits are typically used in the automotive, aerospace, and other industries to drill abrasive aluminum alloys, carbon-fiber reinforced plastics, and other abrasive materials, and in applications where machine downtime to replace or sharpen worn bits is exceptionally costly. PCD is not used on ferrous metals due to excess wear resulting from a reaction between the carbon in the PCD and the iron in the metal.

Coatings

Diamond-coated 2 mm bits, used for drilling materials such as glass
  • Black oxide is an inexpensive black coating. A black oxide coating provides heat resistance and lubricity, as well as corrosion resistance. The coating increases the life of high-speed steel bits.
  • Titanium nitride (TiN) is a very hard metallic material that can be used to coat a high-speed steel bit (usually a twist bit), extending the cutting life by three or more times. Even after sharpening, the leading edge of coating still provides improved cutting and lifetime.
  • Titanium aluminum nitride (TiAlN) is a similar coating that can extend tool life five or more times.
  • Titanium carbon nitride (TiCN) is another coating also superior to TiN.
  • Diamond powder is used as an abrasive, most often for cutting tile, stone, and other very hard materials. Large amounts of heat are generated by friction, and diamond-coated bits often have to be water-cooled to prevent damage to the bit or the workpiece.
  • Zirconium nitride has been used as a drill-bit coating for some tools under the Craftsman brand name.
  • Al-Chrome Silicon Nitride (AlCrSi/Ti)N is a multilayer coating made of alternating nanolayer, developed using chemical vapor deposition technique, is used in drilling carbon fiber reinforced polymer (CFRP) and CFRP-Ti stack. (AlCrSi/Ti)N is a superhard ceramic coating, which performs better than other coated and uncoated drill.[3][4]
  • BAM coating is Boron-Aluminum-Magnesium BAlMgB14 is a superhard ceramic coating also used in composite drilling.[3][5]

Universal bits

General-purpose drill bits can be used in wood, metal, plastic, and most other materials.

Twist drill bit

The twist drill bit is the type produced in largest quantity today. It comprises a cutting point at the tip of a cylindrical shaft with helical flutes; the flutes act as an Archimedean screw and lift swarf out of the hole.

The modern-style twist drill bit was invented by Sir Joseph Whitworth in 1860. They were later improved by Steven A. Morse of East Bridgewater, Massachusetts, who experimented with the pitch of the twist.[6][7][8] The original method of manufacture was to cut two grooves in opposite sides of a round bar, then to twist the bar (giving the tool its name) to produce the helical flutes. Nowadays, the drill bit is usually made by rotating the bar while moving it past a grinding wheel to cut the flutes in the same manner as cutting helical gears.

Twist drill bits range in diameter from 0.002 to 3.5 in (0.051 to 88.900 mm)[9] and can be as long as 25.5 in (650 mm).[10]

The geometry and sharpening of the cutting edges is crucial to the performance of the bit. Small bits that become blunt are often discarded because sharpening them correctly is difficult and they are cheap to replace. For larger bits, special grinding jigs are available. A special tool grinder is available for sharpening or reshaping cutting surfaces on twist drill bits in order to optimize the bit for a particular material.

Manufacturers can produce special versions of the twist drill bit, varying the geometry and the materials used, to suit particular machinery and particular materials to be cut. Twist drill bits are available in the widest choice of tooling materials. However, even for industrial users, most holes are drilled with standard high-speed steel bits.

A 5 mm carbide bit displaying shallow point angle.

The most common twist drill bit (sold in general hardware stores) has a point angle of 118 degrees, acceptable for use in wood, metal, plastic, and most other materials, although it does not perform as well as using the optimum angle for each material. In most materials it does not tend to wander or dig in.

A more aggressive angle, such as 90 degrees, is suited for very soft plastics and other materials; it would wear rapidly in hard materials. Such a bit is generally self-starting and can cut very quickly. A shallower angle, such as 150 degrees, is suited for drilling steels and other tougher materials. This style of bit requires a starter hole, but does not bind or suffer premature wear so long as a suitable feed rate is used.

Drill bits with no point angle are used in situations where a blind, flat-bottomed hole is required. These bits are very sensitive to changes in lip angle, and even a slight change can result in an inappropriately fast cutting drill bit that will suffer premature wear.

Long series drill bits are unusually long twist drill bits. However, they are not the best tool for routinely drilling deep holes, as they require frequent withdrawal to clear the flutes of swarf and to prevent breakage of the bit. Instead, gun drill (through coolant drill) bits are preferred for deep hole drilling.

Step drill bit

A step drill bit is a drill bit that has the tip ground down to a different diameter. The transition between this ground diameter and the original diameter is either straight, to form a counterbore, or angled, to form a countersink. The advantage to this style is that both diameters have the same flute characteristics, which keeps the bit from clogging when drilling in softer materials, such as aluminum; in contrast, a drill bit with a slip-on collar does not have the same benefit. Most of these bits are custom-made for each application, which makes them more expensive.[11]

Unibit

A pair of unibits.

A unibit (often called a step drill bit) is a roughly conical bit with a stairstep profile.[11] Due to its design, a single bit can be used for drilling a wide range of hole sizes. Some bits come to a point and are thus self-starting. The larger-size bits have blunt tips and are used for hole enlarging.

Unibits are commonly used on sheet metal[11] and in general construction. One drill bit can drill the entire range of holes necessary on a countertop, speeding up installation of fixtures. They are often used on softer materials, such as plywood, particle board, drywall, acrylic, and laminate. They can be used on very thin sheet metal, but metals tend to cause premature bit wear and dulling.

Unibits are ideal for use in electrical work where thin steel, aluminum or plastic boxes and chassis are encountered. The short length of the unibit and ability to vary the diameter of the finished hole is an advantage in chassis or front panel work. The finished hole can often be made quite smooth and burr-free, especially in plastic.

An additional use of unibits is deburring holes left by other bits, as the sharp increase to the next step size allows the cutting edge to scrape burrs off the entry surface of the workpiece. However, the straight flute is poor at chip ejection, and can cause a burr to be formed on the exit side of the hole, more so than a spiral twist drill bit turning at high speed.

The unibit was invented by Harry C. Oakes and patented in 1973.[12] It was sold only by the Unibit Corporation in the 1980s until the patent expired, and was later sold by other companies. Unibit is a trademark of Irwin Industrial Tools.

Although it is claimed that the stepped drill was invented by Harry C. Oakes it was in fact conceived by George Godbold and first produced by Bradley Engineering, Wandsworth, London in the 1960s and named the Bradrad. It was marketed under this name until the patent was sold to Halls Ltd.uk by whom it is still produced.

Hole saw

1.25 in (32 mm) hole saw bit.

Hole saws take the form of a short open cylinder with saw-teeth on the open edge, used for making relatively large holes in thin material. They remove material only from the edge of the hole, cutting out an intact disc of material, unlike many drills which remove all material in the interior of the hole. They can be used to make large holes in wood, sheet metal and other materials.

For metal

Center and spotting drill bit

Center drill bits, numbers 1 to 6

Center drill bits, occasionally known as Slocombe drill bits, are used in metalworking to provide a starting hole for a larger-sized drill bit or to make a conical indentation in the end of a workpiece in which to mount a lathe center. In either use, the name seems appropriate, as the bit is either establishing the center of a hole or making a conical hole for a lathe center. However, the true purpose of a center drill bit is the latter task, while the former task is best done with a spotting drill bit (as explained in detail below). Nevertheless, because of the frequent lumping together of both the terminology and the tool use, suppliers may call center drill bits combined-drill-and-countersinks in order to make it unambiguously clear what product is being ordered. They are numbered from 00 to 10 (smallest to largest).

Use in making holes for lathe centers

Center drill bits are meant to create a conical hole for "between centers" manufacturing processes (typically lathe or cylindrical-grinder work). That is, they provide a location for a (live, dead, or driven) center to locate the part about an axis. A workpiece machined between centers can be safely removed from one process (perhaps turning in a lathe) and set up in a later process (perhaps a grinding operation) with a negligible loss in the co-axiality of features (usually total indicator reading (TIR) less than 0.002 in (0.05 mm); and TIR < 0.0001 in (0.003 mm) is held in cylindrical grinding operations, as long as conditions are correct).

Use in spotting hole centers

Traditional twist drill bits may tend to wander when started on an unprepared surface. Once a bit wanders off course it is difficult to bring it back on center. A center drill bit frequently provides a reasonable starting point as it is short and therefore has a reduced tendency to wander when drilling is started.

While the above is a common use of center drill bits, it is a technically incorrect practice and should not be considered for production use. The correct tool to start a traditionally drilled hole (a hole drilled by a high-speed steel (HSS) twist drill bit) is a spotting drill bit (or a spot drill bit, as they are referenced in the U.S.). The included angle of the spotting drill bit should be the same as, or greater than, the conventional drill bit so that the drill bit will then start without undue stress on the bit's corners, which would cause premature failure of the bit and a loss of hole quality.

Most modern solid-carbide bits should not be used in conjunction with a spot drill bit or a center drill bit, as solid-carbide bits are specifically designed to start their own hole. Usually, spot drilling will cause premature failure of the solid-carbide bit and a certain loss of hole quality. If it is deemed necessary to chamfer a hole with a spot or center drill bit when a solid-carbide drill bit is used, it is best practice to do so after the hole is drilled.[citation needed]

When drilling with a hand-held drill the flexibility of the bit is not the primary source of inaccuracy—it is the user's hands. Therefore, for such operations, a center punch is often used to spot the hole center prior to drilling a pilot hole.

Core drill bit

HSS core drills in various sizes
A magnetic core drilling machine making hole with annular cutter (core drill)

The term core drill bit is used for two quite different tools.

Enlarging holes

A bit used to enlarge an existing hole is called a core drill bit. The existing hole may be the result of a core from a casting or a stamped (punched) hole. The name comes from its first use, for drilling out the hole left by a foundry core, a cylinder placed in a mould for a casting that leaves an irregular hole in the product. This core drill bit is solid.

These core drill bits are similar in appearance to reamers as they have no cutting point or means of starting a hole. They have 3 or 4 flutes which enhances the finish of the hole and ensures the bit cuts evenly. Core drill bits differ from reamers in the amount of material they are intended to remove. A reamer is only intended to enlarge a hole a slight amount which, depending on the reamers size, may be anything from 0.1 millimeter to perhaps a millimeter. A core drill bit may be used to double the size of a hole.

Using an ordinary two-flute twist drill bit to enlarge the hole resulting from a casting core will not produce a clean result, the result will possibly be out of round, off center and generally of poor finish. The two fluted drill bit also has a tendency to grab on any protuberance (such as flash) which may occur in the product.

Extracting core

A hollow cylindrical bit which will cut a hole with an annular cross-section and leave the inner cylinder of material (the "core") intact, often removing it, is also called a core drill bit or annular cutter. Unlike other drills, the purpose is often to retrieve the core rather than simply to make a hole. A diamond core drill bit is intended to cut an annular hole in the workpiece. Large bits of similar shape are used for geological work, where a deep hole is drilled in sediment or ice and the drill bit, which now contains an intact core of the material drilled with a diameter of several centimeters, is retrieved to allow study of the strata.

Countersink bit

A countersink is a conical hole cut into a manufactured object; a countersink bit (sometimes called simply countersink) is the cutter used to cut such a hole. A common use is to allow the head of a bolt or screw, with a shape exactly matching the countersunk hole, to sit flush with or below the surface of the surrounding material. (By comparison, a counterbore makes a flat-bottomed hole that might be used with a hex-headed capscrew.) A countersink may also be used to remove the burr left from a drilling or tapping operation.

Ejector drill bit

Used almost exclusively for deep hole drilling of medium to large diameter holes (approximately 34–4 in or 19–102 mm diameter). An ejector drill bit uses a specially designed carbide cutter at the point. The bit body is essentially a tube within a tube. Flushing water travels down between the two tubes. Chip removal is back through the center of the bit.

Gun drill bit

Gun drills are straight fluted drills which allow cutting fluid (either compressed air or a suitable liquid) to be injected through the drill's hollow body to the cutting face.

Indexable drill bit

Indexable drill bits are primarily used in CNC and other high precision or production equipment, and are the most expensive type of drill bit, costing the most per diameter and length. Like indexable lathe tools and milling cutters, they use replaceable carbide or ceramic inserts as a cutting face to alleviate the need for a tool grinder. One insert is responsible for the outer radius of the cut, and another insert is responsible for the inner radius. The tool itself handles the point deformity, as it is a low-wear task. The bit is hardened and coated against wear far more than the average drill bit, as the shank is non-consumable. Almost all indexable drill bits have multiple coolant channels for prolonged tool life under heavy usage. They are also readily available in odd configurations, such as straight flute, fast spiral, multiflute, and a variety of cutting face geometries.

Typically indexable drill bits are used in holes that are no deeper than about 5 times the bit diameter. They are capable of quite high axial loads and cut very fast.

Left-hand bit

An 1/8 inch left-hand drill bit

Left-hand bits are almost always twist bits and are predominantly used in the repetition engineering industry on screw machines or drilling heads. Left-handed drill bits allow a machining operation to continue where either the spindle cannot be reversed or the design of the machine makes it more efficient to run left-handed. With the increased use of the more versatile CNC machines, their use is less common than when specialized machines were required for machining tasks.

Screw extractors are essentially left-hand bits of specialized shape, used to remove common right-hand screws whose heads are broken or too damaged to allow a screwdriver tip to engage, making use of a screwdriver impossible. The extractor is pressed against the damaged head and rotated counter-clockwise and will tend to jam in the damaged head and then turn the screw counter-clockwise, unscrewing it. For screws that break off deeper in the hole, an extractor set will often include left handed drill bits of the appropriate diameters so that grab holes can be drilled into the screws in a left handed direction, preventing further tightening of the broken piece.

Metal spade bit

A spade drill bit for metal is a two part bit with a tool holder and an insertable tip, called an insert. The inserts come in various sizes that range from 716 to 2.5 inches (11 to 64 mm). The tool holder usually has a coolant passage running through it.[13] They are capable of cutting to a depth of about 10 times the bit diameter. This type of drill bit can also be used to make stepped holes.

Straight fluted bit

Straight fluted drill bits do not have a helical twist like twist drill bits do. They are used when drilling copper or brass because they have less of a tendency to "dig in" or grab the material.

Trepanedit

A trepan, sometimes called a BTA drill bit (after the Boring and Trepanning Association), is a drill bit that cuts an annulus and leaves a center core. Trepans usually have multiple carbide inserts and rely on water to cool the cutting tips and to flush chips out of the hole. Trepans are often used to cut large diameters and deep holes. Typical bit diameters are 6–14 in (150–360 mm) and hole depth from 12 in (300 mm) up to 71 feet (22 m).

For woodedit

Brad point bitedit

A 10.5 mm brad point drill bit

The brad point drill bit (also known as lip and spur drill bit, and dowel drill bit) is a variation of the twist drill bit which is optimized for drilling in wood.

Conventional twist drill bits tend to wander when presented to a flat workpiece. For metalwork, this is countered by drilling a pilot hole with a spotting drill bit. In wood, the brad point drill bit is another solution: the center of the drill bit is given not the straight chisel of the twist drill bit, but a spur with a sharp point, and four sharp corners to cut the wood. While drilling, the sharp point of the spur pushes into the soft wood to keep the drill bit in line.

Metals are typically isotropic, so even an ordinary twist drill bit will shear the edges of the hole cleanly. Wood drilled across the grain, however, produces long strands of wood fiber. These long strands tend to pull out of the hole, rather than being cleanly cut at the hole edge. The brad point drill bit has the outside corner of the cutting edges leading, so that it cuts the periphery of the hole before the inner parts of the cutting edges plane off the base of the hole. By cutting the periphery first, the lip maximizes the chance that the fibers can be cut cleanly, rather than having to be pulled messily from the timber.

Brad point drill bits are also effective in soft plastic. When using conventional twist drill bits in a handheld drill, where the drilling direction is not maintained perfectly throughout the operation, there is a tendency for hole edges to be "smeared" due to side friction and heat.

In metal, the brad point drill bit is confined to drilling only the thinnest and softest sheet metals, ideally with a drill press. The bits have an extremely fast cutting tool geometry: no point angle, combined with a large (considering the flat cutting edge) lip angle, causes the edges to take a very aggressive cut with relatively little point pressure. This means these bits tend to bind in metal; given a workpiece of sufficient thinness, they have a tendency to punch through and leave the bit's cross-sectional geometry behind.

Brad point drill bits are ordinarily available in diameters from 3–16 mm (0.12–0.63 in).

Wood spade bitedit

Spade bits are used for rough boring in wood. They tend to cause splintering when they emerge from the workpiece. Woodworkers avoid splintering by finishing the hole from the opposite side of the work. Spade bits are flat, with a centering point and two cutters. The cutters are often equipped with spurs in an attempt to ensure a cleaner hole. With their small shank diameters relative to their boring diameters, spade bit shanks often have flats forged or ground into them to prevent slipping in drill chucks. Some bits are equipped with long shanks and have a small hole drilled through the flat part, allowing them to be used much like a bell-hanger bit. Intended for high speed use, they are used with electric hand drills. Spade bits are also sometimes referred to as "paddle bits".

Spade drill bits are ordinarily available in diameters from 6 to 36 mm, or 14 to 1+12 inches.







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk