Špeciálna relativita - Biblioteka.sk

Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím


Panta Rhei Doprava Zadarmo
...
...


A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Špeciálna relativita

Špeciálna teória relativity (ŠTR) je fyzikálna teória publikovaná v roku 1905 Albertom Einsteinom. Nahradzuje Newtonove predstavy o priestore a čase a zahŕňa teóriu elektromagnetického poľa reprezentovanú Maxwellovými rovnicami. Teória sa nazýva špeciálnou, lebo opisuje iba zvláštny prípad Einsteinovho princípu relativity, kde sa vplyv gravitácie môže zanedbať. O desať rokov neskôr publikoval Einstein všeobecnú teóriu relativity, ktorá zahrňuje aj gravitáciu.

Motivácia pre špeciálnu teóriu relativity

Princíp relativity zaviedol už Galileo Galilei. Prekonal starý absolutistický pohľad Aristotela a zastával názor, že pohyb, alebo minimálne rovnomerný priamočiary pohyb, má zmysel iba relatívne (pomerne) k niečomu inému. Ďalej tvrdil, že neexistuje absolútne referenčné teleso, oproti ktorému by všetky ostatné veci mohli byť merané. Galileo zaviedol aj sadu transformácií nazývaných Galileove transformácie, ktoré sa používajú dodnes a definoval 5 pohybových zákonov. Keď Newton konštruoval svoju mechaniku, prevzal Galileiho princíp relativity a zredukoval počet základných pohybových zákonov na tri.

Hoci sa zdalo, že Newtonova klasická mechanika funguje pre všetky javy zahrňujúce pevné telesá, svetlo bolo stále problematické. Newton veril, že svetlo má časticovú povahu, neskôr sa však zistilo, že model svetla ako priečneho vlnenia vysvetľuje jeho vlastnosti omnoho lepšie. Mechanické vlnenie sa šíri v médiu, a to isté bolo predpokladané pre svetlo. Toto hypotetické médium bolo pomenované „svetlonosný éter“. Zdalo sa, že mal mať niektoré nezlučiteľné vlastnosti, ako napríklad byť extrémne tuhý s ohľadom na vysokú rýchlosť svetla, na druhej strane takmer nehmotný, aby nespomaľoval Zem pri jej pohybe v ňom. Predstava éteru vzkriesila myšlienku absolútnej vzťažnej sústavy, ktorou by bola tá, ktorá je v vzhľadom na éter v pokoji.

Na začiatku 19. storočia začali byť svetlo, elektrina a magnetizmus považované za rôzne aspekty elektromagnetického poľa. Maxwellove rovnice ukazovali, že elektromagnetické žiarenie vysielané urýchľovaným elektrickým nábojom sa vždy šíri rýchlosťou svetla. Tieto rovnice boli založené na myšlienke existencie éteru, v ktorom sa rýchlosť žiarenia nemení v závislosti na rýchlosti pohybu zdroja. Tieto vlastnosti sú analogické klasickému mechanickému vlneniu. Naproti tomu by sa mala v závislosti na rýchlosti pozorovateľa, meniť rýchlosť žiarenia. Fyzici sa pokúsili využiť túto myšlienku na zmeranie rýchlosti Zeme vo vzťahu k éteru. Najznámejší z týchto pokusov bol Michelson-Morleyho experiment. Pretože tieto pokusy boli neúspešné, vyšlo najavo, že rýchlosť svetla sa nemení s rýchlosťou pozorovateľa, a pretože – podľa Maxwellových rovníc – sa nemení ani s meniacou sa rýchlosťou zdroja, musí byť nemenná (invariantná) pre všetkých pozorovateľov.

Ešte pred teóriou relativity si Hendrik Lorentz a iní všimli, že elektromagnetické sily sa líšia v závislosti od umiestnenia pozorovateľa. Napríklad jeden pozorovateľ nemusel pozorovať žiadne magnetické pole v určitej oblasti, zatiaľ čo iný, pohybujúci sa smerom k prvému áno. Lorentz navrhol teóriu éteru, v ktorej objekty a pozorovatelia pohybujúci sa vzhľadom na nehybný éter podliehajú fyzickému skracovaniu (Lorentz-Fitzgeraldova kontrakcia). Ukázalo sa, že táto teória by bola v úplne zhode s výsledkami experimentov, ak by podliehal zmene navyše aj čas (dilatácia času). Zdalo sa, že jeho teória umožňuje zladiť teóriu elektromagnetického poľa a klasickú Newtonovu fyziku nahradením Galileiho transformácie. Pri práci s rýchlosťami omnoho menšími ako je rýchlosť svetla bolo možné Lorentzove transformácie zanedbať a výsledné zákony zjednodušiť do Galileiho transformácie. Lorentz navrhol platnosť tejto teórie pre všetky sily, vtedy si však neuvedomil celú silu jeho teórie. Táto teória, dnes nazývaná Lorentzova teória éteru, bola kritizovaná dokonca i Lorentzom samotným, pre jej zrejmú ad hoc podstatu.

Zatiaľ čo Lorentz navrhol rovnice Lorentzovej transformácie, Einsteinovým prínosom bolo vysvetlenie a odvodenie týchto rovníc zo základnejších princípov a bez predpokladu existencie éteru. Einstein chcel zistiť, čo je nemenné (invariantné) pre všetkých pozorovateľov. V špeciálnej teórii relativity sa zdanlivo zložité Lorentzove a Fitzgeraldove transformácie jasne odvodzujú z jednoduchej geometrie a Pytagorovej vety. Pôvodný názov teórie bol „O elektrodynamike pohybujúcich sa telies“ (v nemeckom origináli – „Zur Elektrodynamik bewegter Körper“). Bol to Max Planck, kto odporučil termín „relativita“, ktorý zdôrazňuje predstavu transformácie zákonov fyziky medzi pozorovateľmi relatívne sa pohybujúcimi jeden k druhému.

Špeciálna teória relativity sa obvykle zaoberá chovaním objektov a pozorovateľov, ktorí zostávajú v pokoji alebo sa pohybujú konštantnou rýchlosťou. V tomto prípade hovoríme, že pozorovateľ je v inerciálnej vzťažnej sústave. Umiestnenie a časy udalostí zaznamenané pozorovateľmi v rôznych inerciálnych vzťažných sústavách je možné porovnať pomocou rovníc Lorentzovej transformácie. O špeciálnej teórii relativity (ďalej ŠTR) sa často nesprávne uvádza, že nemôže byť použitá na objekty a pozorovateľov, ktorých pohyb nie je rovnomerný ale zrýchlený (neinerciálne vzťažné sústavy). Dokazuje to napríklad problém „relativistickej rakety“, kde ŠTR správne predpovedá chovanie zrýchľovaných telies (tiel) v prítomnosti konštantného alebo nulového gravitačného poľa alebo tých v rotujúcej vzťažnej sústave. Táto teória iba nie je schopná opísať presne pohyb v gravitačných poliach, pri ktorom sa teleso dostáva do miest s rôznym gravitačným potenciálom.

Postuláty špeciálnej teórie relativity

Einsteinova zásluha je v tom, že sa dokázal správne zorientovať v zmätku viacerých protichodných poznatkov vtedajšej doby, a že fyziku (aplikovanú na inerciálne sústavy) postavil na dvoch základných postulátoch:

  • Prvý postulát (Princíp relativity) – Všetky fyzikálne zákony musia byť vo všetkých inerciálnych sústavách invariantne vyjadrené.
  • Druhý postulát (konštantná rýchlosť svetla c) – Rýchlosť svetla vo vákuu je vo všetkých inerciálnych sústavách rovnaká; alebo rýchlosť svetla je rovnaká pre všetkých inerciálnych pozorovateľov, vo všetkých smeroch a nezávisí na rýchlosti objektu vyžarujúceho svetlo.

Matematická formulácia postulátov

V prísne matematickej formulácii špeciálnej teórie relativity predpokladajme, že vesmír existuje v štvorrozmernom časopriestore M. Jednotlivé body v časopriestore sú udalosťami; fyzikálne objekty v časopriestore opíšeme ako svetočiary (ak predpokladáme, že objekt je bodový) alebo svetoplochy (ak predpokladáme, že objekt je väčší ako bodový). Svetočiary alebo svetoplochy opisujú iba pohyb objektu; objekt však môže mať aj iné fyzikálne charakteristiky ako energiu, hybnosť, hmotnosť, elektrický náboj, atď.

Okrem udalostí a fyzikálnych objektov majme navyše triedu inerciálnych pozorovateľov (ktorí môžu alebo nemusia zodpovedať vlastnému fyzikálnemu objektu). Každý inerciálny pozorovateľ je spojený s nejakou inerciálnou vzťažnou sústavou. Táto vzťažná sústava poskytuje súradnicový systém so súradnicami pre udalosti v časopriestore M. Navyše táto vzťažná sústava poskytuje súradnice pre všetky ostatné charakteristiky objektu v časopriestore, napríklad poskytuje súradnice pre hybnosť a energiu objektu, súradnice pre elektromagnetické pole a pod.

Predpokladajme, že pre akýchkoľvek dvoch inerciálnych pozorovateľov existuje transformácia súradníc, ktorá prevádza súradnice zo vzťažnej sústavy jedného pozorovateľa do vzťažnej sústavy druhého pozorovateľa. Táto transformácia nestanovuje iba prevod časopriestorových súradníc , ale zaisťuje aj prevod všetkých ostatných fyzikálnych súradníc, ako napr. pravidlá prevodu pre hybnosť a energiu , atď. (V praxi je možné s týmito prevodnými pravidlami efektívne pracovať pomocou matematiky tenzorov.)

Ďalej predpokladajme, že vesmír sa riadi množstvom fyzikálnych zákonov. Matematicky sa dá každý fyzikálny zákon vyjadriť vzhľadom na súradnicu niektorej inerciálnej vzťažnej sústavy rovnicou (napríklad diferenciálnou), ktorá sa týka rôznych súradníc rôznych objektov v časopriestore. Typickými príkladmi sú Maxwellove rovnice a Newtonove pohybové zákony.

Prvý postulát (princíp relativity)

Žiadny fyzikálny zákon sa nemení transformáciou súradníc z jednej inerciálnej vzťažnej sústavy do druhej. Preto, ak sa objekt v časopriestore riadi matematickými rovnicami popisujúce fyzikálny zákon v jednej inerciálnej sústave, musí sa riadiť tými istými rovnicami pri použití v ľubovoľnej inej inerciálnej vzťažnej sústave.

Druhý postulát (konštantná rýchlosť svetla c)

Existuje základná konštanta s nasledujúcou vlastnosťou. Pokiaľ A, B sú dve udalosti majúce súradnice a v inerciálnej vzťažnej sústave , a súradnice a v inej inerciálnej vzťažnej sústave potom,

vtedy a len vtedy, ak .

Neformálne, druhý postulát stanovuje, že objekty pohybujúce sa rýchlosťou svetla c v jednej vzťažnej sústave sa budú nutne pohybovať rýchlosťou svetla c vo všetkých vzťažných sústavách. Ukázalo sa, že druhý postulát sa dá matematicky odvodiť z prvého postulátu a Maxwellových rovníc, v prípade, že rýchlosť svetla c je daná , kde je permeabilita a je permitivita vákua. Pretože sa Maxwellovými rovnicami riadi šírenie elektromagnetického žiarenia, akým je napríklad svetlo, označujeme bežne c ako rýchlosť svetla a druhý postulát sa dá interpretovať jednoducho ako tvrdenie, že elektrodynamika tak, ako bola popísaná Maxwellovými rovnicami, je správna, v protiklade so skoršou teóriou Galileovej relativity, ktorá bola v rozpore s Maxwellovými rovnicami (ak nepredpokladáme existenciu éteru). Formulácia druhého postulátu tak, ako je daná vyššie, však nevyžaduje existenciu elektromagnetického poľa ani Maxwellových rovníc.

Z druhého postulátu je možné vyvodiť jeho silnejšiu verziu – časopriestorový interval je invariantný pri zmenách v inerciálnej vzťažnej sústave. V predchádzajúcej notácii to znamená, že

Zdroj: Wikipedia.org - čítajte viac o Špeciálna relativita





Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.

Your browser doesn’t support the object tag.

www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk