A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Tento článok alebo jeho časť si vyžaduje úpravu, aby zodpovedal vyššiemu štandardu kvality. Prosím, pozrite si stránky pomocníka, odporúčanie pre encyklopedický štýl a článok vhodne upravte. |
Správnosť faktov alebo vierohodnosť tohto článku alebo jeho časti je sporná. Upravujte preto opatrne, uveďte zdroj a prosím prečítajte si diskusiu. |
Tlaková potenciálna energia alebo tlaková energia je názov tlakového člena v Bernoulliho rovnici. Názov je však zmatočne zvolený, keďže táto energia nesúvisí s kinetickou energiou v žiadnom pripade ju nemožeme kombinovať dohormady.. Preto niektorá literatúra navrhuje názov tlaková práca.[1]
Označovanie
Súvis s Bernoulliho rovnicou
Predstavme si ideálnu tekutinu, ktorá je nestlačiteľná a nenastáva tepelná výmena medzi ňou a okolím (adiabatický dej). Ak táto tekutina v mieste 1 s priemerom S1 prúdi rýchlosťou v1 a tlak nech je p1 a v mieste 2 priemerom S2 prúdi rýchlosťou v2 a tlak nech je p2. Z nestlačiteľnosťi idelálnej kvapaliny vyplýva, že objem kvapaliny, ktorý pretečie miestom 1 je rovnaký ako objem kvapaliny, ktorý pretečie miestom 2. To vedie na rovnicu
Kvapalina v zúženom mieste musí nutne zvýšiť rýchlosť a má tam teda väčšiu kinetickú energiu. Bernoulliho rovnica, ktorá platí pre časovo stacionárne a nevírové prúdenie, dáva vzťah medzi tlakom a rýchlosťou prúdenia kvapaliny
kde je hustota kinetickej energie a je hustota tiažovej potenciálnej energie. Poznajúc zákon zachovania energie sa preto zdá intuitívne interpretovať aj ako hustotu nejakej energie. Veličina sa preto často navýza tlakovou potenciálnou energiou a jej hustotou. Ak je tlak v kvapaline približne konštantný, možno vynechať integrál a dostávame
Kritika
Hoci sa označenie tlakového člena v Bernoulliho rovnici ako istej formy energie zdá byť intuitívne, dopúšťame sa pri tom chyby. Zákon zachovania energie, na ktorý sa odvolávame, totiž platí pre kvapalinu ako celok (v pripade neadiabatického deja treba brať v úvahu aj výmenu tepla s okolím). Jednotlivé časti kvapaliny medzi sebou interagujú a energiu si vymieňajú. Energia malého kvapalného telesa s hmotnosťou pohybujúceho sa v kvapaline sa preto nezachováva, teda
Veľké množstvo literatúry, predovšetkým stredoškolské učebnice fyziky a tiež niektoré vysokoškolské materiály, nesprávne zapisuje na pravej strane rovnice konštantu. Ak sa rovnica predelí objemom kvapalného telesa a sa označí ako hustota (tlakovej) potenciálnej energie, dostáva sa nesprávne odvodená Bernoulliho rovnica. Bernoulliho rovnica totiž nevyjadruje zákon zachovania energie.
Ak by sme predpokladali, že tlaková potenciálna energia je skutočnou energiou, prichádzame dokonca do sporu so zákonom zachovania energie. Jednoduchý príklad
- Predstavme si, že na stole je valec s výškou a s obsahom podstavy naplnený vodou s objemom , na hladine ktorej je piest (zanedbateľnej hmotnosti). V tej istej výške nad stolom je aj závažie hmotnosti . Voda a teleso majú v tomto stave energiu .
- Potom teleso presunieme na piest. Gravitačná potenciálna energia sa nezmenila. Tlak v kvapaline sa ale zväčšil o hodnotu a tlaková potenciálna energia kvapaliny sa zväčšila o . Ak tlakovú potenciálnu energiu započítame to celkovej energie, tak celková energia sústavy sa zväčšila, čo je v rozpore so zákonom zachovania energie.
Človek ľahko nadobudne pocit, že kvapalina pod tlakom je schopná konať prácu. Naozaj to tak aj je, ale táto práca sa vždy koná na úkor
- tiažovej potenciálnej energie, ktorú má kvapalina vďaka svojmu umiestneniu v tiažovom poli,
- elastickej energie kvapaliny, ktorú môže mať reálna kvapalina, ak ju stlačíme na menší objem (ako pružina). Táto energia je ale vzhľadom na malú stlačiteľnosť kvapalín vždy o niekoľko rádov nižšia ako tiažová potenciálna energia.
Referencie
Pozri aj
Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok. Podrobnejšie informácie nájdete na stránke Podmienky použitia.
Žiarivý tok
Anergia (termodynamika)
Biomasa (energetika)
Casimirov jav
Charakteristická energia C3
Chemická energia
Elektrická energia
Energetická nerovnováha Zeme
Energetický zdroj
Energia
Energia vĺn
Energy Cities
Text je dostupný za podmienok Creative
Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších
podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky
použitia.
www.astronomia.sk | www.biologia.sk | www.botanika.sk | www.dejiny.sk | www.economy.sk | www.elektrotechnika.sk | www.estetika.sk | www.farmakologia.sk | www.filozofia.sk | Fyzika | www.futurologia.sk | www.genetika.sk | www.chemia.sk | www.lingvistika.sk | www.politologia.sk | www.psychologia.sk | www.sexuologia.sk | www.sociologia.sk | www.veda.sk I www.zoologia.sk